The aim of this paper is to examine the links between geometry and physics in Levi-Civita’s pre-relativistic works concerning the Absolute differential calculus. Mainly regarding theoretical mechanics and potential theory, these works play an important rôle in the history of tensor analysis as they constitute the most relevant cases of application of this theory to mathematical physics before the advent of general relativity. It is possible to show that the rôle played by the concepts of tensor and covariant and controvariant differentiation in these works is essentially geometric in nature; it is in effect generally connected to the use of the so-called “intrinsic geometry”, that is, of the extension of the theory of congruence of classical differential geometry to Riemannian geometry. The analysis of Levi-Civita’s pre-relativistic works concerning tensor analysis is finally followed by some considerations about the process of ‘geometrization’ of a problem after the introduction of non-Euclidean geometry.

Scopo del presente lavoro è di prendere in esame le relazioni esistenti tra questioni geometriche e fisiche in alcune delle ricerche giovanili di Tullio Levi-Civita riguardanti il Calcolo differenziale assoluto. L'interesse di tali ricerche, riguardanti principalmente la meccanica teorica e la teoria del potenziale, sta nel fatto che esse rappresentano i casi più rilevanti di applicazione dei metodi tensoriali in ambito fisico-matematico nel periodo che precede l’avvento delle teoria della relatività generale. L'analisi delle modalità di intervento dei concetti di base del Calcolo differenziale assoluto mette in luce una caratterizzazione essenzialmente geometrica di queste ricerche, come applicazioni della estensione in ambito riemanniano della teoria delle congruenze della geometria differenziale classica. Ciò conduce, tra l’altro, ad alcune considerazioni finali relative all'idea di 'geometrizzazione' di un problema nel periodo successivo all'avvento delle geometrie non-euclidee.

Geometria e fisica nelle ricerche pre-relativistiche di Levi-Civita riguardanti l'analisi tensoriale / Dell'Aglio, Luca. - In: PHYSIS, RIVISTA INTERNAZIONALE DI STORIA DELLA SCIENZA. - ISSN 0031-9414. - 42(2005), pp. 155-188.

Geometria e fisica nelle ricerche pre-relativistiche di Levi-Civita riguardanti l'analisi tensoriale

DELL'AGLIO, Luca
2005

Abstract

Scopo del presente lavoro è di prendere in esame le relazioni esistenti tra questioni geometriche e fisiche in alcune delle ricerche giovanili di Tullio Levi-Civita riguardanti il Calcolo differenziale assoluto. L'interesse di tali ricerche, riguardanti principalmente la meccanica teorica e la teoria del potenziale, sta nel fatto che esse rappresentano i casi più rilevanti di applicazione dei metodi tensoriali in ambito fisico-matematico nel periodo che precede l’avvento delle teoria della relatività generale. L'analisi delle modalità di intervento dei concetti di base del Calcolo differenziale assoluto mette in luce una caratterizzazione essenzialmente geometrica di queste ricerche, come applicazioni della estensione in ambito riemanniano della teoria delle congruenze della geometria differenziale classica. Ciò conduce, tra l’altro, ad alcune considerazioni finali relative all'idea di 'geometrizzazione' di un problema nel periodo successivo all'avvento delle geometrie non-euclidee.
The aim of this paper is to examine the links between geometry and physics in Levi-Civita’s pre-relativistic works concerning the Absolute differential calculus. Mainly regarding theoretical mechanics and potential theory, these works play an important rôle in the history of tensor analysis as they constitute the most relevant cases of application of this theory to mathematical physics before the advent of general relativity. It is possible to show that the rôle played by the concepts of tensor and covariant and controvariant differentiation in these works is essentially geometric in nature; it is in effect generally connected to the use of the so-called “intrinsic geometry”, that is, of the extension of the theory of congruence of classical differential geometry to Riemannian geometry. The analysis of Levi-Civita’s pre-relativistic works concerning tensor analysis is finally followed by some considerations about the process of ‘geometrization’ of a problem after the introduction of non-Euclidean geometry.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/144866
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact