Lipschitz one-dimensional constrained global optimization (GO) problems where both the objective function and constraints can be multiextremal and non-differentiable are considered in this paper. Problems, where the constraints are verified in a priori given order fixed by the nature of the problem are studied. Moreover, if a constraint is not satisfied at a point, then the remaining constraints and the objective function can be undefined at this point. The constrained problem is reduced to a discontinuous unconstrained problem by the index scheme without introducing additional parameters or variables. A new geometric method using adaptive estimates of local Lipschitz constants is introduced. The estimates are calculated by using the local tuning technique proposed recently. Numerical experiments show quite a satisfactory performance of the new method in comparison with the penalty approach and a method using a priori given Lipschitz constants.
A one-dimensional local tuning algorithm for solving GO problems with partially defined constraints
SERGEEV, Yaroslav;KVASOV, Dmitry;
2007-01-01
Abstract
Lipschitz one-dimensional constrained global optimization (GO) problems where both the objective function and constraints can be multiextremal and non-differentiable are considered in this paper. Problems, where the constraints are verified in a priori given order fixed by the nature of the problem are studied. Moreover, if a constraint is not satisfied at a point, then the remaining constraints and the objective function can be undefined at this point. The constrained problem is reduced to a discontinuous unconstrained problem by the index scheme without introducing additional parameters or variables. A new geometric method using adaptive estimates of local Lipschitz constants is introduced. The estimates are calculated by using the local tuning technique proposed recently. Numerical experiments show quite a satisfactory performance of the new method in comparison with the penalty approach and a method using a priori given Lipschitz constants.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.