The textile industries hold an important position in the global industrial arena because of their undeniable contributions to basic human needs satisfaction and to the world economy. These industries are however major consumers of water, dyes and other toxic chemicals. The effluents generated from each processing step comprise substantial quantities of unutilized resources. The effluents if discharged without prior treatment become potential sources of pollution due to their several deleterious effects on the environment. The treatment of heterogeneous textile effluents therefore demands the application of environmentally benign technology with appreciable quality water reclamation potential. These features can be observed in various innovative membrane based techniques. The present review paper thus elucidates the contributions of membrane technology towards textile effluent treatment and unexhausted raw materials recovery. The reuse possibilities of water recovered through membrane based techniques, such as ultrafiltration and nanofiltration in primary dye houses or auxiliary rinse vats have also been explored. Advantages and bottlenecks, such as membrane fouling associated with each of these techniques have also been highlighted. Additionally, several pragmatic models simulating transport mechanism across membranes have been documented. Finally, various accounts dealing with technoeconomic evaluation of these membrane based textile wastewater treatment processes have been provided.

Remediation of textile effluents by membrane based treatment techniques: A state of the art review

Chakraborty S;CURCIO, Stefano;
2015-01-01

Abstract

The textile industries hold an important position in the global industrial arena because of their undeniable contributions to basic human needs satisfaction and to the world economy. These industries are however major consumers of water, dyes and other toxic chemicals. The effluents generated from each processing step comprise substantial quantities of unutilized resources. The effluents if discharged without prior treatment become potential sources of pollution due to their several deleterious effects on the environment. The treatment of heterogeneous textile effluents therefore demands the application of environmentally benign technology with appreciable quality water reclamation potential. These features can be observed in various innovative membrane based techniques. The present review paper thus elucidates the contributions of membrane technology towards textile effluent treatment and unexhausted raw materials recovery. The reuse possibilities of water recovered through membrane based techniques, such as ultrafiltration and nanofiltration in primary dye houses or auxiliary rinse vats have also been explored. Advantages and bottlenecks, such as membrane fouling associated with each of these techniques have also been highlighted. Additionally, several pragmatic models simulating transport mechanism across membranes have been documented. Finally, various accounts dealing with technoeconomic evaluation of these membrane based textile wastewater treatment processes have been provided.
2015
Textile Effluents Membrane Reclamation Model Techno-economic evaluation
File in questo prodotto:
File Dimensione Formato  
YJEMA_4419_edit_report.pdf

Open Access dal 09/08/2016

Descrizione: The publisher version is available at https://www.sciencedirect.com/science/article/pii/S0301479714004046; DOI: 10.1016/j.jenvman.2014.08.008
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 512.11 kB
Formato Adobe PDF
512.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/144987
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 405
  • ???jsp.display-item.citation.isi??? 348
social impact