Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Inclusive-jet cross sections have been measured in the reaction ep -> e + jet + X for photon virtuality Q(2) < 1 GeV2 and gamma p centre-of-mass energies in the region 142 < W-gamma p < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb(-1). Jets were identified using the k(T), anti-k(T) or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, E-T(jet), and pseudorapidity, eta(jet), for jets with E-T(jet) > 17 GeV and -1 < eta(jet) < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of E-T(jet) in different regions of eta(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E-T(jet) and high eta(jet). The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alpha(2)(s)) terms. Values of alpha s (M-Z) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alpha(s) (M-Z) extracted from the measurements based on the k(T) jet algorithm is alpha(s) (M-Z) = 0.1206(-0.0022)(+0.0023)(exp.)(-0.0035)(+0.0042)(th.); the results from the anti-k(T) and SIScone algorithms are compatible with this value and have a similar precision. (c) 2012 Elsevier B.V. All rights reserved.
Inclusive-jet cross sections have been measured in the reaction ep -> e + jet + X for photon virtuality Q(2) < 1 GeV2 and gamma p centre-of-mass energies in the region 142 < W-gamma p < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb(-1). Jets were identified using the k(T), anti-k(T) or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, E-T(jet), and pseudorapidity, eta(jet), for jets with E-T(jet) > 17 GeV and -1 < eta(jet) < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of E-T(jet) in different regions of eta(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E-T(jet) and high eta(jet). The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alpha(2)(s)) terms. Values of alpha s (M-Z) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alpha(s) (M-Z) extracted from the measurements based on the k(T) jet algorithm is alpha(s) (M-Z) = 0.1206(-0.0022)(+0.0023)(exp.)(-0.0035)(+0.0042)(th.); the results from the anti-k(T) and SIScone algorithms are compatible with this value and have a similar precision. (c) 2012 Elsevier B.V. All rights reserved.
Inclusive-jet photoproduction at HERA and determination of alpha(s)
Abramowicz H.;Abt I.;Adamczyk L.;Adamus M.;Aggarwal R.;Antonelli S.;Antonioli P.;Antonov A.;Arneodo M.;Aushev V.;Aushev Y.;Bachynska O.;Bamberger A.;Barakbaev A. N.;Barbagli G.;Bari G.;Barreiro F.;Bartosik N.;Bartsch D.;Basile M.;Behnke O.;Behr J.;Behrens U.;Bellagamba L.;Bertolin A.;Bhadra S.;Bindi M.;Blohm C.;Bokhonov V.;Bold T.;Bondarenko K.;Boos E. G.;Borras K.;Boscherini D.;Bot D.;Brock I.;Brownson E.;Brugnera R.;Bruemmer N.;Bruni A.;Bruni G.;Brzozowska B.;Bussey P. J.;Bylsma B.;Caldwell A.;CAPUA, Marcella;Carlin R.;Catterall C. D.;Chekanov S.;Chwastowski J.;Ciborowski J.;Ciesielski R.;Cifarelli L.;Cindolo F.;Contin A.;Cooper Sarkar A. M.;Coppola N.;Corradi M.;Corriveau F.;Costa M.;D'Agostini G.;Dal Corso F.;del Peso J.;Dementiev R. K.;De Pasquale S.;Derrick M.;Devenish R. C. E.;Dobur D.;Dolgoshein B. A.;Dolinska G.;Doyle A. T.;Drugakov V.;Durkin L. S.;Dusini S.;Eisenberg Y.;Ermolov P. F.;Eskreys A.;Fang S.;Fazio S.;Ferrando J.;Ferrero M. I.;Figiel J.;Forrest M.;Foster B.;Gach G.;Galas A.;Gallo E.;Garfagnini A.;Geiser A.;Gialas I.;Gizhko A.;Gladilin L. K.;Gladkov D.;Glasman C.;Gogota O.;Golubkov Y.u. A.;Goettlicher P.;Grabowska Bold I.;Grebenyuk J.;Gregor I.;Grigorescu G.;Grzelak G.;Gueta O.;Guzik M.;Gwenlan C.;Haas T.;Hain W.;Hamatsu R.;Hart J. C.;Hartmann H.;Hartner G.;Hilger E.;Hochman D.;Hori R.;Horton K.;Huettmann A.;Ibrahim Z. A.;Iga Y.;Ingbir R.;Ishitsuka M.;Jakob H. P.;Januschek F.;Jones T. W.;Juengst M.;Kadenko I.;Kahle B.;Kananov S.;Kanno T.;Karshon U.;Karstens F.;Katkov I. I.;Kaur M.;Kaur P.;Keramidas A.;Khein L. A.;Kim J. Y.;Kisielewska D.;Kitamura S.;Klanner R.;Klein U.;Koffeman E.;Kondrashova N.;Kononeko O.;Kooijman P.;Korol I.e.;Korzhavina I. A.;Kotanski A.;Koetz U.;Kowalski H.;Kuprash O.;Kuze M.;Lee A.;Levchenko B. B.;Levy A.;Libov V.;Limentani S.;Ling T. Y.;Lisovyi M.;Lobodzinska E.;Lohmann W.;Loehr B.;Lohrmann E.;Long K. R.;Longhin A.;Lontkovskyi D.;Lukina O. Y.u.;Maeda J.;Magill S.;Makarenko I.;Malka J.;Mankel R.;Margotti A.;Marini G.;Martin J. F.;MASTROBERARDINO, Anna;Mattingly M. C. K.;Melzer Pellmann I. A.;Mergelmeyer S.;Miglioranzi S.;Idris F. Mohamad;Monaco V.;Montanari A.;Morris J. D.;Mujkic K.;Musgrave B.;Nagano K.;Namsoo T.;Nania R.;Nigro A.;Ning Y.;Nobe T.;Noor U.;Notz D.;Nowak R. J.;Nuncio Quiroz A. E.;Oh B. Y.;Okazaki N.;Oliver K.;Olkiewicz K.;Onishchuk Y.u.;Papageorgiu K.;Parenti A.;Paul E.;Pawlak J. M.;Pawlik B.;Pelfer P. G.;Pellegrino A.;Perlanski W.;Perrey H.;Piotrzkowski K.;Plucinski P.;Pokrovskiy N. S.;Polini A.;Proskuryakov A. S.;Przybycien M.;Raval A.;Reeder D. D.;Reisert B.;Ren Z.;Repond J.;Ri Y. D.;Robertson A.;Roloff P.;Rubinsky I.;Ruspa M.;Sacchi R.;Samson U.;Sartorelli G.;Savin A. A.;Saxon D. H.;SCHIOPPA, Marco;Schlenstedt S.;Schleper P.;Schmidke W. B.;Schneekloth U.;Schoenberg V.;Schoerner Sadenius T.;Schwartz J.;Sciulli F.;Shcheglova L. M.;Shehzadi R.;Shimizu S.;Singh I.;Skillicorn I. O.;Slominski W.;Smith W. H.;Sola V.;Solano A.;Son D.;Sosnovtsev V.;Spiridonov A.;Stadie H.;Stanco L.;Stefaniuk N.;Stern A.;Stewart T. P.;Stifutkin A.;Stopa P.;Suchkov S.;Susinno G.;Suszycki L.;Sztuk Dambietz J.;Szuba D.;Szuba J.;Tapper A. D.;TASSI, Enrico;Terron J.;Theedt T.;Tiecke H.;Tokushuku K.;Tomaszewska J.;Trusov V.;Tsurugai T.;Turcato M.;Turkot O.;Tymieniecka T.;Vazquez M.;Verbytskyi A.;Viazlo O.;Vlasov N. N.;Walczak R.;Abdullah W. A. T. Wan;Whitmore J. J.;Wiggers L.;Wing M.;Wlasenko M.;Wolf G.;Wolfe H.;Wrona K.;Yaguees Molina A. G.;Yamada S.;Yamazaki Y.;Yoshida R.;Youngman C.;Zabiegalov O.;Zarnecki A. F.;Zawiejski L.;Zenaiev O.;Zeuner W.;Zhautykov B. O.;Zhmak N.;Zhou C.;Zichichi A.;Zolkapli Z.;Zotkin D. S.
2012-01-01
Abstract
Inclusive-jet cross sections have been measured in the reaction ep -> e + jet + X for photon virtuality Q(2) < 1 GeV2 and gamma p centre-of-mass energies in the region 142 < W-gamma p < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb(-1). Jets were identified using the k(T), anti-k(T) or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, E-T(jet), and pseudorapidity, eta(jet), for jets with E-T(jet) > 17 GeV and -1 < eta(jet) < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of E-T(jet) in different regions of eta(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E-T(jet) and high eta(jet). The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alpha(2)(s)) terms. Values of alpha s (M-Z) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alpha(s) (M-Z) extracted from the measurements based on the k(T) jet algorithm is alpha(s) (M-Z) = 0.1206(-0.0022)(+0.0023)(exp.)(-0.0035)(+0.0042)(th.); the results from the anti-k(T) and SIScone algorithms are compatible with this value and have a similar precision. (c) 2012 Elsevier B.V. All rights reserved.
Inclusive-jet cross sections have been measured in the reaction ep -> e + jet + X for photon virtuality Q(2) < 1 GeV2 and gamma p centre-of-mass energies in the region 142 < W-gamma p < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb(-1). Jets were identified using the k(T), anti-k(T) or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, E-T(jet), and pseudorapidity, eta(jet), for jets with E-T(jet) > 17 GeV and -1 < eta(jet) < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of E-T(jet) in different regions of eta(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E-T(jet) and high eta(jet). The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alpha(2)(s)) terms. Values of alpha s (M-Z) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alpha(s) (M-Z) extracted from the measurements based on the k(T) jet algorithm is alpha(s) (M-Z) = 0.1206(-0.0022)(+0.0023)(exp.)(-0.0035)(+0.0042)(th.); the results from the anti-k(T) and SIScone algorithms are compatible with this value and have a similar precision. (c) 2012 Elsevier B.V. All rights reserved.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/145358
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
ND
37
36
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.