Consider the first-order linear differential equation with several retarded arguments x'(t) + Sigma(m)(i=1) p(i)(t)x(tau(i)(t)) = 0, t >= t(0), where the functions p(i), tau(i) is an element of C([t(0), infinity), R+), for every i = 1, 2, ... , m, tau(i)(t) <= t for t >= t(0) and lim(t ->infinity) tau(i)(t) = infinity. In this paper the state-of-the-art on the oscillation of all solutions to these equations is reviewed and new sufficient conditions for the oscillation are established, especially in the case of nonmonotone arguments. Examples illustrating the results are given.

Oscillation criteria for differential equations with several retarded arguments

INFANTE, GENNARO
;
2015-01-01

Abstract

Consider the first-order linear differential equation with several retarded arguments x'(t) + Sigma(m)(i=1) p(i)(t)x(tau(i)(t)) = 0, t >= t(0), where the functions p(i), tau(i) is an element of C([t(0), infinity), R+), for every i = 1, 2, ... , m, tau(i)(t) <= t for t >= t(0) and lim(t ->infinity) tau(i)(t) = infinity. In this paper the state-of-the-art on the oscillation of all solutions to these equations is reviewed and new sufficient conditions for the oscillation are established, especially in the case of nonmonotone arguments. Examples illustrating the results are given.
2015
Oscillation, Retarded, Di¤erential equations, Non-monotone arguments
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/145906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 17
social impact