In the paper, a global optimization problem is considered where the objective function f(x) is univariate, black-box, and its first derivative f'(x) satisfies the Lipschitz condition with an unknown Lipschitz constant K. In the literature, there exist methods solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constants. Algorithms working with a number of Lipschitz constants for f'(x) chosen from a set of possible values are not known in spite of the fact that a method working in this way with Lipschitz objective functions, DIRECT, has been proposed in 1993. A new geometric method evolving its ideas to the case of the objective function having a Lipschitz derivative is introduced and studied in this paper. Numerical experiments executed on a number of test functions show that the usage of derivatives allows one to obtain, as it is expected, an acceleration in comparison with the DIRECT algorithm.

A univariate global search working with a set of Lipschitz constants for the first derivative

KVASOV, Dmitry;SERGEEV, Yaroslav
2009-01-01

Abstract

In the paper, a global optimization problem is considered where the objective function f(x) is univariate, black-box, and its first derivative f'(x) satisfies the Lipschitz condition with an unknown Lipschitz constant K. In the literature, there exist methods solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constants. Algorithms working with a number of Lipschitz constants for f'(x) chosen from a set of possible values are not known in spite of the fact that a method working in this way with Lipschitz objective functions, DIRECT, has been proposed in 1993. A new geometric method evolving its ideas to the case of the objective function having a Lipschitz derivative is introduced and studied in this paper. Numerical experiments executed on a number of test functions show that the usage of derivatives allows one to obtain, as it is expected, an acceleration in comparison with the DIRECT algorithm.
2009
Deterministic global optimization; Lipschitz derivatives; Geometric algorithms
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/146022
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 44
social impact