Estrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein–coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17B-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor A (ERA) also contributes to GPR30/EGFRsig naling is less understood. Here, we show that, in ERA-positive BG-1 ovarian cancer cells, both E2 and the GPR30-selective ligand G-1 induced c-fos expression and estrogen-responsive element (ERE)-independent activity of a c-fos reporter gene, whereas only E2 stimulated an ERE responsive reporter gene, indicating that GPR30 signaling does not activate ERA-mediated transcription. Similarly, both ligands up-regulated cyclin D1, cyclin E, and cyclin A, whereas only E2 enhanced progesterone receptor expression. Moreover, both GPR30 and ERA expression are required for c-fos stimulation and extracellular signal-regulated kinase (ERK) activation in response to either E2 or G-1. Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERA expression. Interestingly, we show that both GPR30 and ERA expression along with active EGFRs ignaling are required for E2-stimulated and G-1–stimulated proliferation of ovarian cancer cells. Because G-1 was able to induce both c-fos expression and proliferation in the ERA-negative/GPR30-positive SKBR3 breast cancer cells, the requirement for ERA expression in GPR30/EGFR signaling may depend on the specific cellular context of different tumor types.

G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells

LAPPANO R;VIVACQUA, Adele;RAGO V;MUSTI, Anna Maria;ANDO', Sebastiano;MAGGIOLINI, Marcello
2007-01-01

Abstract

Estrogens play a crucial role in the development of ovarian tumors; however, the signal transduction pathways involved in hormone action are still poorly defined. The orphan G protein–coupled receptor 30 (GPR30) mediates the nongenomic signaling of 17B-estradiol (E2) in a variety of estrogen-sensitive cancer cells through activation of the epidermal growth factor receptor (EGFR) pathway. Whether estrogen receptor A (ERA) also contributes to GPR30/EGFRsig naling is less understood. Here, we show that, in ERA-positive BG-1 ovarian cancer cells, both E2 and the GPR30-selective ligand G-1 induced c-fos expression and estrogen-responsive element (ERE)-independent activity of a c-fos reporter gene, whereas only E2 stimulated an ERE responsive reporter gene, indicating that GPR30 signaling does not activate ERA-mediated transcription. Similarly, both ligands up-regulated cyclin D1, cyclin E, and cyclin A, whereas only E2 enhanced progesterone receptor expression. Moreover, both GPR30 and ERA expression are required for c-fos stimulation and extracellular signal-regulated kinase (ERK) activation in response to either E2 or G-1. Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERA expression. Interestingly, we show that both GPR30 and ERA expression along with active EGFRs ignaling are required for E2-stimulated and G-1–stimulated proliferation of ovarian cancer cells. Because G-1 was able to induce both c-fos expression and proliferation in the ERA-negative/GPR30-positive SKBR3 breast cancer cells, the requirement for ERA expression in GPR30/EGFR signaling may depend on the specific cellular context of different tumor types.
2007
estrogens; GPR30; ovarian cancer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/146370
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 381
  • ???jsp.display-item.citation.isi??? 365
social impact