A novel growth mode, characterized by absence of grain coarsening, Ostwald ripening, and secondary nucleation, is observed for a polar conjugated molecule, viz. tris-(8-hydroxyquinoline) aluminum (III) (Alq(3)), grown onto an apolar silicon substrate by high-vacuum sublimation. It results in correlated droplet patterns on a mesoscopic length scale with narrow size distribution, which can be tuned by means of the deposition time t and substrate temperature T-s. A comprehensive analysis of the results is obtained on the basis of a capture zone model.

Growth of Mesoscopic Correlated Droplet Patterns by High Vacuum Sublimation

I. Aiello;M. Ghedini
2000

Abstract

A novel growth mode, characterized by absence of grain coarsening, Ostwald ripening, and secondary nucleation, is observed for a polar conjugated molecule, viz. tris-(8-hydroxyquinoline) aluminum (III) (Alq(3)), grown onto an apolar silicon substrate by high-vacuum sublimation. It results in correlated droplet patterns on a mesoscopic length scale with narrow size distribution, which can be tuned by means of the deposition time t and substrate temperature T-s. A comprehensive analysis of the results is obtained on the basis of a capture zone model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/146928
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 61
social impact