We propose a new combination of the bivariate Shepard operators (Coman and Trîmbiţaş, 2001 [2]) by the three point Lidstone polynomials introduced in Costabile and Dell’Accio (2005) [7]. The new combination inherits both degree of exactness and Lidstone interpolation conditions at each node, which characterize the interpolation polynomial. These new operators find application to the scattered data interpolation problem when supplementary second order derivative data are given (Kraaijpoel and van Leeuwen, 2010 [13]). Numerical comparison with other well known combinations is presented.

On the bivariate Shepard–Lidstone operators

DELL'ACCIO, Francesco;DI TOMMASO F.
2012-01-01

Abstract

We propose a new combination of the bivariate Shepard operators (Coman and Trîmbiţaş, 2001 [2]) by the three point Lidstone polynomials introduced in Costabile and Dell’Accio (2005) [7]. The new combination inherits both degree of exactness and Lidstone interpolation conditions at each node, which characterize the interpolation polynomial. These new operators find application to the scattered data interpolation problem when supplementary second order derivative data are given (Kraaijpoel and van Leeuwen, 2010 [13]). Numerical comparison with other well known combinations is presented.
2012
Combined Shepard operators; Error analysis; Functional approximation; Lidstone interpolation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/147672
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact