We study the symmetry properties of the weak positive solutions to a class of quasi-linear elliptic problems having a variational structure. On this basis, the asymptotic behaviour of global solutions of the corresponding parabolic equations is also investigated. In particular, if the domain is a ball, the elements of the omega limit set are nonnegative radially symmetric solutions of the stationary problem.

Asymptotic Symmetry for a Class of Quasi-Linear Parabolic Problems

MONTORO, LUIGI;SCIUNZI, Berardino;
2010-01-01

Abstract

We study the symmetry properties of the weak positive solutions to a class of quasi-linear elliptic problems having a variational structure. On this basis, the asymptotic behaviour of global solutions of the corresponding parabolic equations is also investigated. In particular, if the domain is a ball, the elements of the omega limit set are nonnegative radially symmetric solutions of the stationary problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/147818
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact