An efficient palladium-catalyzed synthesis of symmetrically disubstituted ureas via oxidative carbonylation of primary amines is described. The reactions are carried out in the presence of a large excess of carbon dioxide as reaction medium or under solvent-free conditions. The adopted catalyst such as potassium tetraiodopalladate, stable and easy to prepare, allows the use of air as a cheap oxidizing agent. The reactions yield urea and water as the only by-product and proceed with high efficiency with aliphatic and aromatic amines as well. While with primary aliphatic amines, no significant improvement on reactivity is observed when carbon dioxide is used as a solvent, in comparison with the conventional ones, a remarkable high efficiency is obtained with aromatic amines, which shows a dramatic increase in the performance of the catalyst, in terms of turnover number (TON), the highest known so far for this kind of process. Reactions take place in two-phase systems consisting of a homogeneous liquid phase formed by the CO2 expanded amine solution containing the catalyst and a supercritical phase of CO2, CO, O2, and N2.

Palladium-catalyzed synthesis of symmetrical urea derivatives by oxidative carbonylation of primary amines in carbon dioxide medium / DELLA CA', N; Bottarelli, P; Dibenedetto, A; Aresta, M; Gabriele, Bartolo; Salerno, G; Costa, M.. - In: JOURNAL OF CATALYSIS. - ISSN 0021-9517. - 282(2011), pp. 120-127.

Palladium-catalyzed synthesis of symmetrical urea derivatives by oxidative carbonylation of primary amines in carbon dioxide medium

GABRIELE, Bartolo;
2011

Abstract

An efficient palladium-catalyzed synthesis of symmetrically disubstituted ureas via oxidative carbonylation of primary amines is described. The reactions are carried out in the presence of a large excess of carbon dioxide as reaction medium or under solvent-free conditions. The adopted catalyst such as potassium tetraiodopalladate, stable and easy to prepare, allows the use of air as a cheap oxidizing agent. The reactions yield urea and water as the only by-product and proceed with high efficiency with aliphatic and aromatic amines as well. While with primary aliphatic amines, no significant improvement on reactivity is observed when carbon dioxide is used as a solvent, in comparison with the conventional ones, a remarkable high efficiency is obtained with aromatic amines, which shows a dramatic increase in the performance of the catalyst, in terms of turnover number (TON), the highest known so far for this kind of process. Reactions take place in two-phase systems consisting of a homogeneous liquid phase formed by the CO2 expanded amine solution containing the catalyst and a supercritical phase of CO2, CO, O2, and N2.
carbonylation; ureas; palladium
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/147833
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 31
social impact