This study presents a nonlinear spatiotemporal analysis of 1167 station temperature records from the United States Historical Climatology Network covering the period from 1898 through 2008. We use the empirical mode decomposition method to extract the generally nonlinear trends of each station. The statistical significance of each trend is assessed against three null models of the background climate variability, represented by stochastic processes of increasing temporal correlation length. We find strong evidence that more than 50% of all stations experienced a significant trend over the last century with respect to all three null models. A spatiotemporal analysis reveals a significant cooling trend in the South-East and significant warming trends in the rest of the contiguous U.S. It also shows that the warming trend appears to have migrated equatorward. This shows the complex spatiotemporal evolution of climate change at local scales.

A spatiotemporal analysis of U.S. station temperature trends over the last century

CARBONE, Vincenzo
2013-01-01

Abstract

This study presents a nonlinear spatiotemporal analysis of 1167 station temperature records from the United States Historical Climatology Network covering the period from 1898 through 2008. We use the empirical mode decomposition method to extract the generally nonlinear trends of each station. The statistical significance of each trend is assessed against three null models of the background climate variability, represented by stochastic processes of increasing temporal correlation length. We find strong evidence that more than 50% of all stations experienced a significant trend over the last century with respect to all three null models. A spatiotemporal analysis reveals a significant cooling trend in the South-East and significant warming trends in the rest of the contiguous U.S. It also shows that the warming trend appears to have migrated equatorward. This shows the complex spatiotemporal evolution of climate change at local scales.
2013
Global change; Atmospheric processes; Nonlinear geophysics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/148830
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
social impact