A dynamic model to predict crack growth phenomena in z-pinned reinforced composite structures is proposed. The formulation is based on a novel technique, which is able to couple Fracture Mechanics concepts with a strategy based on a moving mesh methodology. The former is utilized to predict the crack growth, whereas the latter defines the way to take into account the geometry changes on the basis of the invoked fracture parameters. The presence of the z-pins is simulated by means of a largescale bridging approach, introducing along the delaminated interfaces normal and tangential traction forces depending on the dynamic characteristics of the pull-out mechanism. In order to evaluate the fracture parameters, which govern the crack evolution, the J-integral decomposition procedure is utilized, providing new expressions in the framework of a large-scale bridging crack growth. A numerical modeling based on the finite element procedure is implemented and comparisons with experimental results are reported to validate the proposed formulation. Moreover, a parametric study is developed to investigate the influence of z-pins on the crack growth mechanisms.
A dynamic model to predict crack growth phenomena in z-pinned reinforced composite structures is proposed. The formulation is based on a novel technique, which is able to couple Fracture Mechanics concepts with a strategy based on a moving mesh methodology. The former is utilized to predict the crack growth, whereas the latter defines the way to take into account the geometry changes on the basis of the invoked fracture parameters. The presence of the z-pins is simulated by means of a large-scale bridging approach, introducing along the delaminated interfaces normal and tangential traction forces depending on the dynamic characteristics of the pull-out mechanism. In order to evaluate the fracture parameters, which govern the crack evolution, the J-integral decomposition procedure is utilized, providing new expressions in the framework of a large-scale bridging crack growth. A numerical modeling based on the finite element procedure is implemented and comparisons with experimental results are reported to validate the proposed formulation. Moreover, a parametric study is developed to investigate the influence of z-pins on the crack growth mechanisms
A dynamic model to predict crack propagation in z-pinned composite structures
BRUNO, Domenico;GRECO, Fabrizio;LONETTI, Paolo
2011-01-01
Abstract
A dynamic model to predict crack growth phenomena in z-pinned reinforced composite structures is proposed. The formulation is based on a novel technique, which is able to couple Fracture Mechanics concepts with a strategy based on a moving mesh methodology. The former is utilized to predict the crack growth, whereas the latter defines the way to take into account the geometry changes on the basis of the invoked fracture parameters. The presence of the z-pins is simulated by means of a largescale bridging approach, introducing along the delaminated interfaces normal and tangential traction forces depending on the dynamic characteristics of the pull-out mechanism. In order to evaluate the fracture parameters, which govern the crack evolution, the J-integral decomposition procedure is utilized, providing new expressions in the framework of a large-scale bridging crack growth. A numerical modeling based on the finite element procedure is implemented and comparisons with experimental results are reported to validate the proposed formulation. Moreover, a parametric study is developed to investigate the influence of z-pins on the crack growth mechanisms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.