The berth allocation problem (BAP) arising in maritime container terminals has received great attention in the literature over recent years. It has been largely modeled as an integer mathematical programming formulation to be adopted at a tactical level, where detailed equipment and manpower schedules, as well as real-time operational conditions are not explicitly modeled. In this paper, decision making for the BAP is supported by integrating two separate models into a Simulation-Optimization framework: a mathematical programming model at the tactical level and a simulation model at the operational level. Specifically, the framework uses a beam search heuristics to obtain a weekly plan at the tactical level, followed by a simulated annealing based search process to adjust allocation decisions at the operational level. At this level, randomness in discharge/loading operations is taken into account and modeled by an event-based Monte Carlo simulator. A non-standard ranking and selection procedure is used to compare alternative BAP solutions, within the Simulation-Optimization procedure, in order to reduce the related number of simulation runs required. Numerical experiments performed on real instances show how, under conditions of uncertainty and variability, the tactical solution returned for the BAP requires tuning at the operational level.

Integrating tactical and operational berth allocation decisions via simulation-optimization

LEGATO Pasquale;MAZZA Rina Mary;GULLI' Daniel
2014-01-01

Abstract

The berth allocation problem (BAP) arising in maritime container terminals has received great attention in the literature over recent years. It has been largely modeled as an integer mathematical programming formulation to be adopted at a tactical level, where detailed equipment and manpower schedules, as well as real-time operational conditions are not explicitly modeled. In this paper, decision making for the BAP is supported by integrating two separate models into a Simulation-Optimization framework: a mathematical programming model at the tactical level and a simulation model at the operational level. Specifically, the framework uses a beam search heuristics to obtain a weekly plan at the tactical level, followed by a simulated annealing based search process to adjust allocation decisions at the operational level. At this level, randomness in discharge/loading operations is taken into account and modeled by an event-based Monte Carlo simulator. A non-standard ranking and selection procedure is used to compare alternative BAP solutions, within the Simulation-Optimization procedure, in order to reduce the related number of simulation runs required. Numerical experiments performed on real instances show how, under conditions of uncertainty and variability, the tactical solution returned for the BAP requires tuning at the operational level.
2014
port logistics; berth planning; simulation optimization; metaheuristics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/149751
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 42
social impact