The preparation of a novel biofuel denoted as Ecodiesel-100 from the partial 1,3-regiospecific alcoholysis of sunflower oil is reported. Pig pancreatic lipase (PPL) was employed in the reaction as both free and immobilised enzyme on sepiolite. The resulting biofuel is composed of fatty acid ethyl esters and monoglycerides (FAEE/MG) blended in a molar relation 2/1. The novel biofuel has similar physico- chemical properties compared to those of conventional biodiesel and/or petrodiesel, avoiding the production of glycerine as by-product. The biocatalyst was found to be strongly fixed to the inorganic support (87.5%). Nevertheless, the efficiency of the immobilised enzyme was reduced to less than half (42%) compared to that of the free PPL. Quantitative conversions of triglycerides and high yields to FAEE were obtained under mild reaction conditions (20–808C, oil/alcohol 2/1 v:v ratio and PPL 0.01–0.1% w/w of total substrate). The immobilised enzyme showed a remarkable stability as well as a great reusability (more than 11 successive reuses) without a significant loss of its initial catalytic activity. Both immobilised and free enzyme exhibited the same reaction mechanism, according to the coincidental results in the Arrhenius parameters (Ln A and Ea). The immobilised PPL was found to be very suitable for the continuous production of biofuel due to its facile recyclability from the reaction mixture.

Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: Partial 1, 3-regiospecific alcoholysis of sunflower oil

MACARIO, Anastasia;GIORDANO, Girolamo
2009-01-01

Abstract

The preparation of a novel biofuel denoted as Ecodiesel-100 from the partial 1,3-regiospecific alcoholysis of sunflower oil is reported. Pig pancreatic lipase (PPL) was employed in the reaction as both free and immobilised enzyme on sepiolite. The resulting biofuel is composed of fatty acid ethyl esters and monoglycerides (FAEE/MG) blended in a molar relation 2/1. The novel biofuel has similar physico- chemical properties compared to those of conventional biodiesel and/or petrodiesel, avoiding the production of glycerine as by-product. The biocatalyst was found to be strongly fixed to the inorganic support (87.5%). Nevertheless, the efficiency of the immobilised enzyme was reduced to less than half (42%) compared to that of the free PPL. Quantitative conversions of triglycerides and high yields to FAEE were obtained under mild reaction conditions (20–808C, oil/alcohol 2/1 v:v ratio and PPL 0.01–0.1% w/w of total substrate). The immobilised enzyme showed a remarkable stability as well as a great reusability (more than 11 successive reuses) without a significant loss of its initial catalytic activity. Both immobilised and free enzyme exhibited the same reaction mechanism, according to the coincidental results in the Arrhenius parameters (Ln A and Ea). The immobilised PPL was found to be very suitable for the continuous production of biofuel due to its facile recyclability from the reaction mixture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/150547
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 70
social impact