Non-diffusive transport, for which the particle mean free path grows nonlinearly in time, is envisaged for many space and laboratory plasmas. In particular, superdiffusion, can be described in terms of a Lévy random walk, in which case the probability of free-path lengths has power-law tails. Here, we develop a direct numerical simulation to reproduce the Lévy random walk, as distinct from the Lévy flights. This implies that in the free-path probability distribution Ψ(x, t) there is a space-time coupling, that is, the free-path length is proportional to the free-path duration. A power-law probability distribution for the free-path duration is assumed, so that the numerical model depends on the power-law slope μ and on the scale distance x_0. The numerical model is able to reproduce the expected mean square deviation, which grows in a superdiffusive way, and the expected propagator P(x, t), which exhibits power-law tails, too. The difference in the power-law slope between the Lévy flights propagator and the Lévy walks propagator is also estimated.

A numerical study of Lévy random walks: Mean square displacement and power-law propagators

ZIMBARDO, Gaetano
Writing – Original Draft Preparation
2015

Abstract

Non-diffusive transport, for which the particle mean free path grows nonlinearly in time, is envisaged for many space and laboratory plasmas. In particular, superdiffusion, can be described in terms of a Lévy random walk, in which case the probability of free-path lengths has power-law tails. Here, we develop a direct numerical simulation to reproduce the Lévy random walk, as distinct from the Lévy flights. This implies that in the free-path probability distribution Ψ(x, t) there is a space-time coupling, that is, the free-path length is proportional to the free-path duration. A power-law probability distribution for the free-path duration is assumed, so that the numerical model depends on the power-law slope μ and on the scale distance x_0. The numerical model is able to reproduce the expected mean square deviation, which grows in a superdiffusive way, and the expected propagator P(x, t), which exhibits power-law tails, too. The difference in the power-law slope between the Lévy flights propagator and the Lévy walks propagator is also estimated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/151701
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact