The paper presents a theoretical prediction of the structural behavior of reinforced concrete (RC) beams externally strengthened to flexure by using a unidirectional ultra-high tensile strength steel (UHTSS) reinforcing mesh embedded in an inorganic matrix (Steel Reinforced Grout, SRG) or in an organic matrix (Steel Reinforced Polymer, SRP). For these innovative composite materials are not yet available in literature specific standard documents, guidelines or analytical models capable to predict the structural behavior of the strengthened elements. Therefore, in order to evaluate the flexural strength of the strengthened beams some analytical models to predict the maximum axial strain developed in Fiber Reinforced Polymer (FRP) systems at the onset of intermediate debonding failure, have been used. The goal is to assess the effectiveness of current analytical models used, up to day, to FRP strengthening systems to the SRG and SRP strengthening systems. For this aim, a database of experimental results on RC beams strengthened in bending by bonded SRG and SRP systems has been collected. The comparisons between the theoretical predictions and the experimental data, in terms of debonding strain values, load carrying capacity, load-midspan deflection curves, have highlighted the reliability and adaptability of the current analytical models. Finally, in order to evaluate the effectiveness of the SRG and SRP systems for strengthening RC beams a parametric study was also carried out. © 2015 Elsevier Ltd All rights reserved.

Reliability and adaptability of the analytical models proposed for the FRP systems to the Steel Reinforced Polymer and Steel Reinforced Grout strengthening systems

BENCARDINO, Francesco;
2015-01-01

Abstract

The paper presents a theoretical prediction of the structural behavior of reinforced concrete (RC) beams externally strengthened to flexure by using a unidirectional ultra-high tensile strength steel (UHTSS) reinforcing mesh embedded in an inorganic matrix (Steel Reinforced Grout, SRG) or in an organic matrix (Steel Reinforced Polymer, SRP). For these innovative composite materials are not yet available in literature specific standard documents, guidelines or analytical models capable to predict the structural behavior of the strengthened elements. Therefore, in order to evaluate the flexural strength of the strengthened beams some analytical models to predict the maximum axial strain developed in Fiber Reinforced Polymer (FRP) systems at the onset of intermediate debonding failure, have been used. The goal is to assess the effectiveness of current analytical models used, up to day, to FRP strengthening systems to the SRG and SRP strengthening systems. For this aim, a database of experimental results on RC beams strengthened in bending by bonded SRG and SRP systems has been collected. The comparisons between the theoretical predictions and the experimental data, in terms of debonding strain values, load carrying capacity, load-midspan deflection curves, have highlighted the reliability and adaptability of the current analytical models. Finally, in order to evaluate the effectiveness of the SRG and SRP systems for strengthening RC beams a parametric study was also carried out. © 2015 Elsevier Ltd All rights reserved.
2015
Fabrics\textiles; Debonding; Strength; Analytical modeling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/152587
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact