The aim of this paper is to provide a graphical representation of the dynamic relations among the marginal processes of a first order multivariate Markov chain. We show how to read Granger-noncausal and contemporaneous independence relations off a particular type of mixed graph, when directed and bi-directed edges are missing. Insights are also provided into the Markov properties with respect to a graph that are retained under marginalization of a multivariate chain. Multivariate logistic models for transition probabilities are associated with the mixed graphs encoding the relevant independencies. Finally, an application on real data illustrates the methodology.
Graphical models for multivariate Markov chains
GIORDANO, Sabrina
2012-01-01
Abstract
The aim of this paper is to provide a graphical representation of the dynamic relations among the marginal processes of a first order multivariate Markov chain. We show how to read Granger-noncausal and contemporaneous independence relations off a particular type of mixed graph, when directed and bi-directed edges are missing. Insights are also provided into the Markov properties with respect to a graph that are retained under marginalization of a multivariate chain. Multivariate logistic models for transition probabilities are associated with the mixed graphs encoding the relevant independencies. Finally, an application on real data illustrates the methodology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.