This work describes a novel experimental design aimed at building a calibration set constituted by samples containing a different number of components. The algorithm performs a reiteration process to maintain the number of samples at the lower value as possible and to ensure an homogeneous presence of all the concentration levels. The mixture design was applied to a drug system composed by one-to-four components in different combination. The resolution of the system was performed by three multivariate UV spectrophotometric methods utilizing principal component regression (PCR) and partial last squares (PLS1 and PLS2) algorithms. The calibration set was composed by 61 references on four concentration levels, including 15 samples for each quaternary, ternary and binary composition and 16 one-component samples. The calibration models were optimized through a careful selection of number of factors and wavelength zones, in such a way as to remove interferences from instrumental noise and excipients present in the pharmaceutical formulations. The prediction power of the regression models were verified and compared by analysis of an external prediction set. The models were finally used to assay pharmaceutical specialities containing the studied drugs in one-to-four formulations.

Improvement of multivariate calibration techniques applied to 1-to-N component mixtures through an optimized experimental design

M. DE LUCA;IOELE, Giuseppina;RAGNO, Gaetano
2006

Abstract

This work describes a novel experimental design aimed at building a calibration set constituted by samples containing a different number of components. The algorithm performs a reiteration process to maintain the number of samples at the lower value as possible and to ensure an homogeneous presence of all the concentration levels. The mixture design was applied to a drug system composed by one-to-four components in different combination. The resolution of the system was performed by three multivariate UV spectrophotometric methods utilizing principal component regression (PCR) and partial last squares (PLS1 and PLS2) algorithms. The calibration set was composed by 61 references on four concentration levels, including 15 samples for each quaternary, ternary and binary composition and 16 one-component samples. The calibration models were optimized through a careful selection of number of factors and wavelength zones, in such a way as to remove interferences from instrumental noise and excipients present in the pharmaceutical formulations. The prediction power of the regression models were verified and compared by analysis of an external prediction set. The models were finally used to assay pharmaceutical specialities containing the studied drugs in one-to-four formulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/153252
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 15
social impact