Lie-Poisson structure of the Lorenz'63 system gives a physical insight on its dynamical and statistical behavior considering the evolution of the associated Casimir functions. We study the invariant density and other recurrence features of a Markov expanding Lorenz-like map of the interval arising in the analysis of the predictability of the extreme values reached by particular physical observables evolving in time under the Lorenz'63 dynamics with the classical set of parameters. Moreover, we prove the statistical stability of such an invariant measure. This will allow us to further characterize the SRB measure of the system.
On the recurrence and robust properties of Lorenz'63 model
GIANFELICE, Michele;
2012-01-01
Abstract
Lie-Poisson structure of the Lorenz'63 system gives a physical insight on its dynamical and statistical behavior considering the evolution of the associated Casimir functions. We study the invariant density and other recurrence features of a Markov expanding Lorenz-like map of the interval arising in the analysis of the predictability of the extreme values reached by particular physical observables evolving in time under the Lorenz'63 dynamics with the classical set of parameters. Moreover, we prove the statistical stability of such an invariant measure. This will allow us to further characterize the SRB measure of the system.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.