In this paper we develop a new theory for the existence, local- ization and multiplicity of positive solutions for a class of non-variational, quasilinear, elliptic systems. In order to do this, we provide a fairly general abstract framework for the existence of fixed points of nonlinear operators acting on cones that satisfy an inequality of Harnack type. Our methodology relies on fixed point index theory. We also provide a non-existence result and an example to illustrate the theory.
A topological approach to the existence and multiplicity of positive solutions of (p, q)-Laplacian systems
INFANTE, GENNARO
;
2015-01-01
Abstract
In this paper we develop a new theory for the existence, local- ization and multiplicity of positive solutions for a class of non-variational, quasilinear, elliptic systems. In order to do this, we provide a fairly general abstract framework for the existence of fixed points of nonlinear operators acting on cones that satisfy an inequality of Harnack type. Our methodology relies on fixed point index theory. We also provide a non-existence result and an example to illustrate the theory.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.