The performanceofdifferentchemometricapproacheswasevaluatedinthespectrophotometricde- termination ofpharmaceuticalmixturescharacterizedbyhavingtheamountofcomponentswithavery high ratio.Principalcomponentregression(PCR),partialleastsquareswithonedependentvariable (PLS1)ormulti-dependentvariables(PLS2),andmultivariatecurveresolution(MCR)wereappliedtothe spectral dataofaternarymixturecontainingparacetamol,sodiumascorbateandchlorpheniramine (150:140:1,m/m/m),andaquaternarymixturecontainingparacetamol,caffeine,phenylephrineand chlorpheniramine (125:6.25:1.25:1,m/m/m/m).TheUVspectraofthecalibrationsamplesintherangeof 200–320 nmwerepre-treatedbyremovingnoiseanduselessdata,andthewavelengthregionshaving the mostusefulanalyticalinformationwereselectedusingtheregressioncoefficients calculatedinthe multivariatemodeling.Allthedefined chemometricmodelswerevalidatedonexternalsamplesetsand then appliedtocommercialpharmaceuticalformulations.Differentdataintervals, fixedat0.5,1.0,and 2.0 point/nm,weretestedtooptimizethepredictionabilityofthemodels.Thebestresultswereobtained using thePLS1calibrationmodelsandthequantification ofthespeciesofaloweramountwassig- nificantly improvedbyadopting0.5datainterval,whichshowedaccuracybetween94.24%and107.76%.

Optimization of wavelength range and data interval in chemometric analysis of complex pharmaceutical mixtures

De Luca M;IOELE, Giuseppina;RAGNO, Gaetano
2016-01-01

Abstract

The performanceofdifferentchemometricapproacheswasevaluatedinthespectrophotometricde- termination ofpharmaceuticalmixturescharacterizedbyhavingtheamountofcomponentswithavery high ratio.Principalcomponentregression(PCR),partialleastsquareswithonedependentvariable (PLS1)ormulti-dependentvariables(PLS2),andmultivariatecurveresolution(MCR)wereappliedtothe spectral dataofaternarymixturecontainingparacetamol,sodiumascorbateandchlorpheniramine (150:140:1,m/m/m),andaquaternarymixturecontainingparacetamol,caffeine,phenylephrineand chlorpheniramine (125:6.25:1.25:1,m/m/m/m).TheUVspectraofthecalibrationsamplesintherangeof 200–320 nmwerepre-treatedbyremovingnoiseanduselessdata,andthewavelengthregionshaving the mostusefulanalyticalinformationwereselectedusingtheregressioncoefficients calculatedinthe multivariatemodeling.Allthedefined chemometricmodelswerevalidatedonexternalsamplesetsand then appliedtocommercialpharmaceuticalformulations.Differentdataintervals, fixedat0.5,1.0,and 2.0 point/nm,weretestedtooptimizethepredictionabilityofthemodels.Thebestresultswereobtained using thePLS1calibrationmodelsandthequantification ofthespeciesofaloweramountwassig- nificantly improvedbyadopting0.5datainterval,whichshowedaccuracybetween94.24%and107.76%.
2016
Chemometrics Spectrophotometry Principal componentanalysis Partial leastsquares Multivariatecurveresolution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/153981
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact