We derive an asymptotic equation that describes the propagation of weakly nonlinear surface waves on a tangential discontinuity in incompressible magnetohydrodynamics. The equation is similar to, but simpler than, previously derived asymptotic equations for weakly nonlinear Rayleigh waves in elasticity, and is identical to a model equation for nonlinear Rayleigh waves proposed by Hamilton et al. The most interesting feature of the surface waves is that their nonlinear self-interaction is nonlocal. As a result, of this nonlocal nonlinearity, smooth solutions break down in finite time, and appear to form cusps.

Nonlinear surface waves on a tangential discontinuity in magnetohydrodynamics

ALI', Giuseppe;
2003

Abstract

We derive an asymptotic equation that describes the propagation of weakly nonlinear surface waves on a tangential discontinuity in incompressible magnetohydrodynamics. The equation is similar to, but simpler than, previously derived asymptotic equations for weakly nonlinear Rayleigh waves in elasticity, and is identical to a model equation for nonlinear Rayleigh waves proposed by Hamilton et al. The most interesting feature of the surface waves is that their nonlinear self-interaction is nonlocal. As a result, of this nonlocal nonlinearity, smooth solutions break down in finite time, and appear to form cusps.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/154891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact