Let H be a real Hilbert space. Consider on H a nonexpansive mapping T with a fixed point, a contraction f with coefficient 0 < α <1, and a strongly positive linear bounded operator A with coefficient γ¯ >0. Let 0 < γ <γ¯/α. It is proved that the sequence {xn} generated by the iterative method xn+1 = (I − αnA)T xn + αnγf (xn) converges strongly to a fixed point ˜x ∈ Fix(T ) which solves the variational inequality (γf −A) ˜x,x − ˜x 0 for x ∈ Fix(T ). Keywords: Nonexpansive mapping; Iterative method; Variational inequality; Fixed point; Projection; Viscosity approximation
a general iterative method for nonexpansive mappings in hilbert spaces / Marino, Giuseppe; Xu, H. K.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 318(2006), pp. 43-52.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | a general iterative method for nonexpansive mappings in hilbert spaces |
Autori: | |
Data di pubblicazione: | 2006 |
Rivista: | |
Citazione: | a general iterative method for nonexpansive mappings in hilbert spaces / Marino, Giuseppe; Xu, H. K.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 318(2006), pp. 43-52. |
Handle: | http://hdl.handle.net/20.500.11770/155083 |
Appare nelle tipologie: | 1.1 Articolo in rivista |