Fe–Co bimetallic catalysts supported on MgO were studied for the catalytic chemical vapor deposition growth of carbon nanotubes (CNTs). Different wt.% metal loadings were investigated at various deposition temperatures and times. Characterization of the products involved thermal analysis (DTA–TGA), X-ray diffraction, spectroscopy (Raman, UPS, EELS and STS) and microscopy (SEM, TEM and STM) techniques. It was found that the metal content is critical, not only to the yield and the structural quality of the synthesized carbon nanotubes, but it can be also used to tune the desired type of synthesized nanotubes. Lower (2 wt.%) loadings of Fe–Co catalysts favor the formation of single- and/or double-wall CNTs for deposition time and temperature 30 min and 800 C, respectively. Thermal analysis and Raman measurements showed that these thin CNTs were synthesized at high amounts (CNT-per-catalyst wt.% of more than 100%), exhibiting high graphitization degree with only traces of by-products (mainly amorphous carbon) among them. Microscopy results revealed the formation of CNTs bundles, consisting of individual nanotubes with less than 2 nmouter diameter, while additional energy loss measurements pointed out that the deposited CNTs are mainly single wall. Higher (10 wt.%) Fe–Co loadings resulted to the formation of multi-wall CNTs.

Fe-Co bimetallic catalysts supported on MgO were studied for the catalytic chemical vapor deposition growth of carbon nanotubes (CNTs). Different wt.% metal loadings were investigated at various deposition temperatures and times. Characterization of the products involved thermal analysis (DTA-TGA), X-ray diffraction, spectroscopy (Raman, UPS, EELS and STS) and microscopy (SEM, TEM and STM) techniques. It was found that the metal content is critical, not only to the yield and the structural quality of the synthesized carbon nanotubes, but it can be also used to tune the desired type of synthesized nanotubes. Lower (2 wt.%) loadings of Fe-Co catalysts favor the formation of single- and/or double-wall CNTs for deposition time and temperature 30 min and 800 degrees C, respectively. Thermal analysis and Raman measurements showed that these thin CNTs were synthesized at high amounts (CNT-per-catalyst wt.% of more than 100%), exhibiting high graphitization degree with only traces of by-products (mainly amorphous carbon) among them. Microscopy results revealed the formation of CNTs bundles, consisting of individual nanotubes with less than 2 nm outer diameter, while additional energy loss measurements pointed out that the deposited CNTs are mainly single wall. Higher (10 wt.%) Fe-Co loadings resulted to the formation of multi-wall CNTs. (C) 2010 Elsevier Ltd. All rights reserved.

A spectro-microscopic investigation of Fe–Co bimetallic catalysts supported on MgO for the production of thin carbon nanotubes

Policicchio A;CARUSO, Tommaso;CHIARELLO, Gennaro;FORMOSO, Vincenzo;AGOSTINO, Raffaele Giuseppe
2010

Abstract

Fe-Co bimetallic catalysts supported on MgO were studied for the catalytic chemical vapor deposition growth of carbon nanotubes (CNTs). Different wt.% metal loadings were investigated at various deposition temperatures and times. Characterization of the products involved thermal analysis (DTA-TGA), X-ray diffraction, spectroscopy (Raman, UPS, EELS and STS) and microscopy (SEM, TEM and STM) techniques. It was found that the metal content is critical, not only to the yield and the structural quality of the synthesized carbon nanotubes, but it can be also used to tune the desired type of synthesized nanotubes. Lower (2 wt.%) loadings of Fe-Co catalysts favor the formation of single- and/or double-wall CNTs for deposition time and temperature 30 min and 800 degrees C, respectively. Thermal analysis and Raman measurements showed that these thin CNTs were synthesized at high amounts (CNT-per-catalyst wt.% of more than 100%), exhibiting high graphitization degree with only traces of by-products (mainly amorphous carbon) among them. Microscopy results revealed the formation of CNTs bundles, consisting of individual nanotubes with less than 2 nm outer diameter, while additional energy loss measurements pointed out that the deposited CNTs are mainly single wall. Higher (10 wt.%) Fe-Co loadings resulted to the formation of multi-wall CNTs. (C) 2010 Elsevier Ltd. All rights reserved.
Fe–Co bimetallic catalysts supported on MgO were studied for the catalytic chemical vapor deposition growth of carbon nanotubes (CNTs). Different wt.% metal loadings were investigated at various deposition temperatures and times. Characterization of the products involved thermal analysis (DTA–TGA), X-ray diffraction, spectroscopy (Raman, UPS, EELS and STS) and microscopy (SEM, TEM and STM) techniques. It was found that the metal content is critical, not only to the yield and the structural quality of the synthesized carbon nanotubes, but it can be also used to tune the desired type of synthesized nanotubes. Lower (2 wt.%) loadings of Fe–Co catalysts favor the formation of single- and/or double-wall CNTs for deposition time and temperature 30 min and 800 C, respectively. Thermal analysis and Raman measurements showed that these thin CNTs were synthesized at high amounts (CNT-per-catalyst wt.% of more than 100%), exhibiting high graphitization degree with only traces of by-products (mainly amorphous carbon) among them. Microscopy results revealed the formation of CNTs bundles, consisting of individual nanotubes with less than 2 nmouter diameter, while additional energy loss measurements pointed out that the deposited CNTs are mainly single wall. Higher (10 wt.%) Fe–Co loadings resulted to the formation of multi-wall CNTs.
CHEMICAL-VAPOR-DEPOSITION; LARGE-SCALE SYNTHESIS; NARROW DIAMETER DISTRIBUTION; CLAY-MINERALS; CVD GROWTH; NANOPARTICLES
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/155096
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact