New geological field data, integrated with interpretation of commercial seismic lines, allowed us to constrain the geometry and time-space evolution of the fault system that ruled the tectono-sedimentary evolution of the NS-striking Crati graben, in the axial portion of the northern Calabrian Arc. We highlight that this basin is controlled by a 60-km long east-dipping master fault, referred to as the Crati Graben Detachment Fault (CGDF). On the Seismic sections, the CGDF appears as an east-dipping low-angle reflection reaching the surface along the eastern slope of the Catena Costiera Calabra. Its surface expression corresponds to an alignment of moderately-inclined (30° to 45°) left-stepping en-échelon faults. More to the East, a number of E- and W-dipping high-angle normal faults branch upward from the CGDF. Their reconstructed timing suggest that the westernmost faults are active since the Early Pleistocene and show a progressive eastward rejuvenation trend. The conversion to depth of a W-E oriented seismic section, crossing the entire Crati graben, highlights that the CGDF has a staircase geometry, with an average angle of 30°, and reaches a depth of 7-8 km below the east side of the basin. The evolutionary stages of the related fault system were reconstructed by restoring the section through the Move suite software (Midland Valley Exploration), in order to verify the kinematic consistency of our subsurface interpretation and estimate the amount of associate extension. Finally, the present activity and the possible seismogenic role of the CGDF is preliminarily discussed, by comparing the geometry of the extensional fault system with the available historical and seismological instrumental datasets.
Structural style of Quaternary extension in the Crati Valley (Calabrian Arc): evidencemin support of an east-dipping detachment fault
PILUSO, EUGENIO;
2017-01-01
Abstract
New geological field data, integrated with interpretation of commercial seismic lines, allowed us to constrain the geometry and time-space evolution of the fault system that ruled the tectono-sedimentary evolution of the NS-striking Crati graben, in the axial portion of the northern Calabrian Arc. We highlight that this basin is controlled by a 60-km long east-dipping master fault, referred to as the Crati Graben Detachment Fault (CGDF). On the Seismic sections, the CGDF appears as an east-dipping low-angle reflection reaching the surface along the eastern slope of the Catena Costiera Calabra. Its surface expression corresponds to an alignment of moderately-inclined (30° to 45°) left-stepping en-échelon faults. More to the East, a number of E- and W-dipping high-angle normal faults branch upward from the CGDF. Their reconstructed timing suggest that the westernmost faults are active since the Early Pleistocene and show a progressive eastward rejuvenation trend. The conversion to depth of a W-E oriented seismic section, crossing the entire Crati graben, highlights that the CGDF has a staircase geometry, with an average angle of 30°, and reaches a depth of 7-8 km below the east side of the basin. The evolutionary stages of the related fault system were reconstructed by restoring the section through the Move suite software (Midland Valley Exploration), in order to verify the kinematic consistency of our subsurface interpretation and estimate the amount of associate extension. Finally, the present activity and the possible seismogenic role of the CGDF is preliminarily discussed, by comparing the geometry of the extensional fault system with the available historical and seismological instrumental datasets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.