The relevant kinetic aspects related to an innovative method of biological macromolecules crystallization based on microporous hydrophobic membranes, used both as active surfaces to promote heterogeneous nucleation and as a mass-transfer apparatus to concentrate macromolecular solutions by solvent removal in vapour phase, have been evaluated. Polypropylene membranes, supplied in the form of hollow fibres, have been aligned in a versatile system, designed for an on-line spectrophotometric monitoring of hen egg white lysozyme crystallizing solutions (experimental conditions: 0.1 M NaAc/HAc Buffer pH 4.6, 0.5-5.8% wt/vol NaCl, 20degreesC). The turbidity measurements have been exploited in order to follow: (i) the induction time of crystallization, (ii) the early stage nucleation kinetics based on the Rayleigh scattering theory, and (iii) the crystal growth rate (coupled with data evaluated from image-analysis carried out by optical microscopy) under a model hypothesis of exponential growth of clusters. The crystals have been qualitatively assessed by an X-ray crystallographic analysis carried out at the synchrotron light laboratory ELETTRA.

Membrane crystallization of lysozyme: kinetic aspects

CURCIO, EFREM;
2003-01-01

Abstract

The relevant kinetic aspects related to an innovative method of biological macromolecules crystallization based on microporous hydrophobic membranes, used both as active surfaces to promote heterogeneous nucleation and as a mass-transfer apparatus to concentrate macromolecular solutions by solvent removal in vapour phase, have been evaluated. Polypropylene membranes, supplied in the form of hollow fibres, have been aligned in a versatile system, designed for an on-line spectrophotometric monitoring of hen egg white lysozyme crystallizing solutions (experimental conditions: 0.1 M NaAc/HAc Buffer pH 4.6, 0.5-5.8% wt/vol NaCl, 20degreesC). The turbidity measurements have been exploited in order to follow: (i) the induction time of crystallization, (ii) the early stage nucleation kinetics based on the Rayleigh scattering theory, and (iii) the crystal growth rate (coupled with data evaluated from image-analysis carried out by optical microscopy) under a model hypothesis of exponential growth of clusters. The crystals have been qualitatively assessed by an X-ray crystallographic analysis carried out at the synchrotron light laboratory ELETTRA.
2003
Heterogeneous nucleation, Microporous hydrophobic membranes, Protein crystallization, X-ray diffraction, Membrane crystallization, Lysozyme
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/155614
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 66
social impact