In [1] there is an expansion in Bernoulli polynomials for sufficiently smooth real functions in an interval $[a, b]\subset {\mathbb R}$ that has useful applications to numerical analysis. An analogous result in a 2-dimensional context is derived in [2] in the case of rectangle. In this note we generalize the above-mentioned one-dimensional expansion to the case of $C^m$-functions on a 2-dimensional simplex; a method to generalize the expansion on an $N$-dimensional simplex is also discussed. This new expansion is applied to find new cubature formulas for 2-dimensional simplex.

Expansions over a simplex of real functions by means of Bernoulli polynomials

DELL'ACCIO, Francesco
2001-01-01

Abstract

In [1] there is an expansion in Bernoulli polynomials for sufficiently smooth real functions in an interval $[a, b]\subset {\mathbb R}$ that has useful applications to numerical analysis. An analogous result in a 2-dimensional context is derived in [2] in the case of rectangle. In this note we generalize the above-mentioned one-dimensional expansion to the case of $C^m$-functions on a 2-dimensional simplex; a method to generalize the expansion on an $N$-dimensional simplex is also discussed. This new expansion is applied to find new cubature formulas for 2-dimensional simplex.
2001
Bernoulli polynomials, expansion, simplex
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/156710
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact