Composite membranes based on Nafion with the inclusion of cationic and anionic nanoclays, Laponite, and layered double hydroxide (LDH), respectively, were used to increase the operating temperature of a direct methanol fuel cell (DMFC). The electrochemical behavior of the hybrid nanocomposites was investigated in a single cell at different temperatures (from 90 to 110 °C), and the results were compared with those obtained on the filler-free Nafion membrane. Cell resistance measurements showed a significant improvement of the water retention capability at intermediate temperature for the composite membranes, in particular the LDH-based one. This feature was investigated and explained by a thorough NMR study (diffusometry, relaxometry, and 1H spectral analysis) on the different membranes. Furthermore, the dispersion of 2D plate-like nanolayers in the polymeric matrix demonstrates to be a physical barrier, considerably reducing the methanol mobility through an increase of the tortuosity of the diffusional paths of methanol molecules

Methanol and Proton Transport in Layered Double Hydroxide and Smectite Clay based-Composites: Influence on the Electrochemical Behavior of Direct Methanol Fuel Cells at Intermediate Temperatures

NICOTERA, ISABELLA
;
C. Simari;
2015-01-01

Abstract

Composite membranes based on Nafion with the inclusion of cationic and anionic nanoclays, Laponite, and layered double hydroxide (LDH), respectively, were used to increase the operating temperature of a direct methanol fuel cell (DMFC). The electrochemical behavior of the hybrid nanocomposites was investigated in a single cell at different temperatures (from 90 to 110 °C), and the results were compared with those obtained on the filler-free Nafion membrane. Cell resistance measurements showed a significant improvement of the water retention capability at intermediate temperature for the composite membranes, in particular the LDH-based one. This feature was investigated and explained by a thorough NMR study (diffusometry, relaxometry, and 1H spectral analysis) on the different membranes. Furthermore, the dispersion of 2D plate-like nanolayers in the polymeric matrix demonstrates to be a physical barrier, considerably reducing the methanol mobility through an increase of the tortuosity of the diffusional paths of methanol molecules
2015
Composite Nafion membrane; Methanol crossover; Direct methanol fuel cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/157663
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact