According to PCR assays and sequencing, we now report the shared presence of two rps3 introns, namely the rps3i74 and the rps3i249, in the mitochondria of all the classes representing the surviving lineages of gymnosperms, and unveil several lineages experiencing intron loss. Interestingly, the rps3 intron gains and losses within the four groups of gymnosperms let us sort out the Pinaceae and the non-Pinaceae into intron (þ)- and intron ()-lineages, respectively. Worthy of mention is also the finding that only Gnetum within the Gnetales harbours both the rps3 introns. This intron distribution pattern is consistent with the hypothesis that the two rps3 introns were likely present in the common ancestor of the seed plants and, then, independently lost in the non-Pinaceae during gymnosperm evolution. The derived secondary structural model of the novel group IIA intron improves our understanding of the significance and origin of the extraordinary length polymorphisms observed among rps3i249 orthologs. Despite the remarkable structural plasticity to adopt and reject introns, the rps3 mRNAs undergo accurate processing by splicing and extensive editing in gymnosperm mitochondria. This study provides additional insights into the evolutionarily high dynamics of mitochondrial introns which may come and go in closely related plant species. The turnover of the mitochondrial rps3 group II introns seen among lineages of seed plants further suggests that these introns might be an additional signature to discriminate between particularly cryptical taxonomic groups for which there is a need of a further evaluation of their evolutionary affiliation.
Lineage-specific group II intron gains and losses of the mitochondrial rps3 gene in gymnosperms
REGINA, Teresa Maria Rosaria;
2010-01-01
Abstract
According to PCR assays and sequencing, we now report the shared presence of two rps3 introns, namely the rps3i74 and the rps3i249, in the mitochondria of all the classes representing the surviving lineages of gymnosperms, and unveil several lineages experiencing intron loss. Interestingly, the rps3 intron gains and losses within the four groups of gymnosperms let us sort out the Pinaceae and the non-Pinaceae into intron (þ)- and intron ()-lineages, respectively. Worthy of mention is also the finding that only Gnetum within the Gnetales harbours both the rps3 introns. This intron distribution pattern is consistent with the hypothesis that the two rps3 introns were likely present in the common ancestor of the seed plants and, then, independently lost in the non-Pinaceae during gymnosperm evolution. The derived secondary structural model of the novel group IIA intron improves our understanding of the significance and origin of the extraordinary length polymorphisms observed among rps3i249 orthologs. Despite the remarkable structural plasticity to adopt and reject introns, the rps3 mRNAs undergo accurate processing by splicing and extensive editing in gymnosperm mitochondria. This study provides additional insights into the evolutionarily high dynamics of mitochondrial introns which may come and go in closely related plant species. The turnover of the mitochondrial rps3 group II introns seen among lineages of seed plants further suggests that these introns might be an additional signature to discriminate between particularly cryptical taxonomic groups for which there is a need of a further evaluation of their evolutionary affiliation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.