Let $\Delta$ be a tree such that each vertex has valency at least 3 and let $\cal A$ be a set of regular subgraphs of valency 2. In the early eighties A. Delgado and B. Stellmacher introduced the uniqueness and exchange conditions on the pair $(\Delta, {\cal A})$ and showed how they relate to generalized polygons. We modify the exchange condition and show how the modified version relates to Moore graphs. This is then used to give the isomorphism type of the amalgam of vertex stabilizers of two adjacent vertices in an $s$-arc transitive graph with trivial edge kernel and $s \geq 4$.

More on Moore graphs

VAN BON, Jozef
2013-01-01

Abstract

Let $\Delta$ be a tree such that each vertex has valency at least 3 and let $\cal A$ be a set of regular subgraphs of valency 2. In the early eighties A. Delgado and B. Stellmacher introduced the uniqueness and exchange conditions on the pair $(\Delta, {\cal A})$ and showed how they relate to generalized polygons. We modify the exchange condition and show how the modified version relates to Moore graphs. This is then used to give the isomorphism type of the amalgam of vertex stabilizers of two adjacent vertices in an $s$-arc transitive graph with trivial edge kernel and $s \geq 4$.
2013
Moore graphs; Trees
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/158389
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact