In 1988 Manickam and Singhi conjectured that for every positive integer $d$ and every $n\ge 4d$, every setof $n$ real numbers whose sum is non-negative contains at least $\binom{n−1}{d−1}$ subsets of size $d$ whose sums are non-negative. In this paper we make use of Hall’s matching theorem in order to study some numbers relatedto this conjecture.

New results related to a conjecture of Manickam and Singhi

Chiaselotti Giampiero;Infante Gennaro;Marino Giuseppe
2008-01-01

Abstract

In 1988 Manickam and Singhi conjectured that for every positive integer $d$ and every $n\ge 4d$, every setof $n$ real numbers whose sum is non-negative contains at least $\binom{n−1}{d−1}$ subsets of size $d$ whose sums are non-negative. In this paper we make use of Hall’s matching theorem in order to study some numbers relatedto this conjecture.
2008
Hall Theorem; Manickam-Singhi Conjecture; Erdos-Ko-Rado Theorem
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/158442
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact