We construct operators t ( z ) in the elliptic algebra A q,p ( sl (2) c ) closing an exchange algebra when p m = q c +2 for m ∈ Z . In addition they commute when p = q 2 k for k non-zero integer, and they belong to the center of A q,p ( sl (2) c ) when k is odd. The Poisson structures obtained for t ( z ) in these classical limits are identical to the q -deformed Virasoro Poisson algebra, characterizing the structures at p ≠ q 2 k as new W q,p ( sl (2)) algebras.

New ${cal W}_{q,p}(sl(2))$ algebras from the elliptic algebra ${cal A}_{q,p}(widehat {sl}(2)_c)$

ROSSI, Marco;
1998-01-01

Abstract

We construct operators t ( z ) in the elliptic algebra A q,p ( sl (2) c ) closing an exchange algebra when p m = q c +2 for m ∈ Z . In addition they commute when p = q 2 k for k non-zero integer, and they belong to the center of A q,p ( sl (2) c ) when k is odd. The Poisson structures obtained for t ( z ) in these classical limits are identical to the q -deformed Virasoro Poisson algebra, characterizing the structures at p ≠ q 2 k as new W q,p ( sl (2)) algebras.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/158517
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact