The paper presents a theoretical and numerical study of the diffraction problem approached in the Fresnel approximation. The problem was formulated by a non-dimensional approach, which implies the definition of two non-dimensional quantities: F and In particular the parameter F is the well-known Fresnel number, whose value was usually used to classify diffraction regime. In analyzing the numerical approach some limitations imposed by the discretization arise; in particular these limitations constrain the level of sampling to be used for the diffracting field by requiring more and more elements when the diffraction conditions become more severe - i.e. increasing the dimension of the diffracting aperture and/or decreasing the distance of the plane where the diffracted field is observed.
A non-dimensional approach to diffraction phenomena in the Fresnel approximation
BRUNO, LUIGI
;Poggialini A.
2011-01-01
Abstract
The paper presents a theoretical and numerical study of the diffraction problem approached in the Fresnel approximation. The problem was formulated by a non-dimensional approach, which implies the definition of two non-dimensional quantities: F and In particular the parameter F is the well-known Fresnel number, whose value was usually used to classify diffraction regime. In analyzing the numerical approach some limitations imposed by the discretization arise; in particular these limitations constrain the level of sampling to be used for the diffracting field by requiring more and more elements when the diffraction conditions become more severe - i.e. increasing the dimension of the diffracting aperture and/or decreasing the distance of the plane where the diffracted field is observed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.