Urban drainage transports a complex and heterogeneous mixture of aqueous-phase chemicals and also solid-phase particulate matter (PM). In this study, event-scale particle size distribution (PSD) of wet and dry weather flows are measured, modeled, and compared. The flows are generated from a complex urbanizing sewershed (Liguori catchment) in Cosenza, Italy. Results indicate PSDs are heterodisperse, ranging from colloidal to sand-size PM. On an event scale, dry weather PSDs are coarser than wet weather flows, yet within each flow class results indicate flow-limited behavior and only nominal variability during and between events. PSDs from each event and flow category are modeled with a cumulative gamma distribution. Results produced nonparametric distributions of shape (gamma) and scaling (alpha) parameters as well as a d (50) index. Wet weather flows generated statistically significantly higher distributions of gamma and alpha and statistically significantly lower d (50). Nonparametric parameter distributions illustrate greater, yet still nominal variability for wet weather flows.

Size Distribution of Wet Weather and Dry Weather Particulate Matter Entrained in Combined Flows from an Urbanizing Sewershed

PIRO, Patrizia;
2010-01-01

Abstract

Urban drainage transports a complex and heterogeneous mixture of aqueous-phase chemicals and also solid-phase particulate matter (PM). In this study, event-scale particle size distribution (PSD) of wet and dry weather flows are measured, modeled, and compared. The flows are generated from a complex urbanizing sewershed (Liguori catchment) in Cosenza, Italy. Results indicate PSDs are heterodisperse, ranging from colloidal to sand-size PM. On an event scale, dry weather PSDs are coarser than wet weather flows, yet within each flow class results indicate flow-limited behavior and only nominal variability during and between events. PSDs from each event and flow category are modeled with a cumulative gamma distribution. Results produced nonparametric distributions of shape (gamma) and scaling (alpha) parameters as well as a d (50) index. Wet weather flows generated statistically significantly higher distributions of gamma and alpha and statistically significantly lower d (50). Nonparametric parameter distributions illustrate greater, yet still nominal variability for wet weather flows.
2010
Granulometry; Wet weather flow; Particle size distribution; Gamma distribution; Sewershed; Dry weather flow
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/158993
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact