We report on multiphysics full-wave techniques in the frequency (energy)-domain and time-domain, aimed at the investigation of the combined electromagnetic-coherent transport problem in nano-structured materials and devices, in particular carbon-based materials/devices. The quantum transport is modeled by i) discrete Hamiltonians at atomistic scale, ii) Schrödinger equation, and/or Dirac/Dirac-like eqs. at continuous level. In the frequency-domain, a rigorous Poisson-coherent transport equation system is provided. In the time-domain, Maxwell equations are self-consistently coupled to the Schrödinger/Dirac equations.
Full-wave techniques for the electromagnetic-quantum transport modeling in nano-devices
SINDONA, Antonio;
2014-01-01
Abstract
We report on multiphysics full-wave techniques in the frequency (energy)-domain and time-domain, aimed at the investigation of the combined electromagnetic-coherent transport problem in nano-structured materials and devices, in particular carbon-based materials/devices. The quantum transport is modeled by i) discrete Hamiltonians at atomistic scale, ii) Schrödinger equation, and/or Dirac/Dirac-like eqs. at continuous level. In the frequency-domain, a rigorous Poisson-coherent transport equation system is provided. In the time-domain, Maxwell equations are self-consistently coupled to the Schrödinger/Dirac equations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.