In Part I of this series of papers, we have proposed a new logic-based planning language, called K. This language facilitates the description of transitions between states of knowledge and it is well suited for planning under incomplete knowledge. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, proving to be very flexible. In the present Part II, we describe the DLVK planning system, which implements K on top of the disjunctive logic programming system DLV. This novel planning system allows for solving hard planning problems, including secure planning under incomplete initial states (often called conformant planning in the literature), which cannot be solved at all by other logic-based planning systems such as traditional satisfiability planners. We present a detailed comparison of the DLVK system to several state-of-the-art conformant planning systems, both at the level of system features and on benchmark problems. Our results indicate that, thanks to the power of knowledge-state problem encoding, the DLVK system is competitive even with special purpose conformant planning systems, and it often supplies a more natural and simple representation of the planning problems. © 2002 Elsevier Science B.V. All rights reserved.

A Logic Programming Approach to Knowledge-State Planning, II: the DLVK System

FABER, WOLFGANG;LEONE, Nicola;
2003-01-01

Abstract

In Part I of this series of papers, we have proposed a new logic-based planning language, called K. This language facilitates the description of transitions between states of knowledge and it is well suited for planning under incomplete knowledge. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, proving to be very flexible. In the present Part II, we describe the DLVK planning system, which implements K on top of the disjunctive logic programming system DLV. This novel planning system allows for solving hard planning problems, including secure planning under incomplete initial states (often called conformant planning in the literature), which cannot be solved at all by other logic-based planning systems such as traditional satisfiability planners. We present a detailed comparison of the DLVK system to several state-of-the-art conformant planning systems, both at the level of system features and on benchmark problems. Our results indicate that, thanks to the power of knowledge-state problem encoding, the DLVK system is competitive even with special purpose conformant planning systems, and it often supplies a more natural and simple representation of the planning problems. © 2002 Elsevier Science B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/159466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 68
social impact