Several classes of scientific and commercial applications require the execution of a large number of independent tasks. One highly successful and low-cost mechanism for acquiring the necessary computing power for these applications is the 'public-resource computing', or 'desktop Grid' paradigm, which exploits the computational power of private computers. So far, this paradigm has not been applied to data mining applications for two main reasons. First, it is not straightforward to decompose a data mining algorithm into truly independent sub-tasks. Second, the large volume of the involved data makes it difficult to handle the communication costs of a parallel paradigm. This paper introduces a general framework for distributed data mining applications called Mining@home. In particular, we focus on one of the main data mining problems: the extraction of closed frequent itemsets from transactional databases. We show that it is possible to decompose this problem into independent tasks, which however need to share a large volume of the data. We thus introduce a data-intensive computing network, which adopts a P2P topology based on super peers with caching capabilities, aiming to support the dissemination of large amounts of information. Finally, we evaluate the execution of a pattern extraction task on such network. Copyright (c) 2009 John Wiley & Sons, Ltd.

Mining@home: toward a public-resource computing framework for distributed data mining

TALIA, Domenico
2010

Abstract

Several classes of scientific and commercial applications require the execution of a large number of independent tasks. One highly successful and low-cost mechanism for acquiring the necessary computing power for these applications is the 'public-resource computing', or 'desktop Grid' paradigm, which exploits the computational power of private computers. So far, this paradigm has not been applied to data mining applications for two main reasons. First, it is not straightforward to decompose a data mining algorithm into truly independent sub-tasks. Second, the large volume of the involved data makes it difficult to handle the communication costs of a parallel paradigm. This paper introduces a general framework for distributed data mining applications called Mining@home. In particular, we focus on one of the main data mining problems: the extraction of closed frequent itemsets from transactional databases. We show that it is possible to decompose this problem into independent tasks, which however need to share a large volume of the data. We thus introduce a data-intensive computing network, which adopts a P2P topology based on super peers with caching capabilities, aiming to support the dissemination of large amounts of information. Finally, we evaluate the execution of a pattern extraction task on such network. Copyright (c) 2009 John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/159710
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 8
social impact