We present an experimental characterization and a comprehensive theoretical modeling of macroscopic plasmonic heat production that takes place in a single layer of small gold nanoparticles (GNPs), randomly distributed on a glass substrate, covered with different host media and acted on by a resonant radiation. We have performed a detailed experimental study of the temperature variations of three different systems, obtained by varying the density of nanoparticles. Due to the macroscopic dimension of the spot size, the used laser irradiates a huge number of nanoparticles, inducing a broad thermo-plasmonic effect that modifies the thermal conductivity of the entire system; starting from the state of art, we have implemented a simple model that enables to evaluate the resulting new thermal conductivity. We have also extended our theoretical approach to the macroscale, including an analysis of the effects predicted for different NP densities and laser spot size values, as well as for different values of the laser intensity, which can be as low as 0.05 W cm-2. Theoretically predicted temperature variations are in excellent agreement with experimental results.

Photo-thermal study of a layer of randomly distributed gold nanoparticles: From nano-localization to macro-scale effects

Pezzi, Luigia;Palermo, Giovanna;Veltri, Alessandro;Cataldi, Ugo;Ritacco, Tiziana;Giocondo, Michele;Umeton, Cesare;De Luca, Antonio
2017-01-01

Abstract

We present an experimental characterization and a comprehensive theoretical modeling of macroscopic plasmonic heat production that takes place in a single layer of small gold nanoparticles (GNPs), randomly distributed on a glass substrate, covered with different host media and acted on by a resonant radiation. We have performed a detailed experimental study of the temperature variations of three different systems, obtained by varying the density of nanoparticles. Due to the macroscopic dimension of the spot size, the used laser irradiates a huge number of nanoparticles, inducing a broad thermo-plasmonic effect that modifies the thermal conductivity of the entire system; starting from the state of art, we have implemented a simple model that enables to evaluate the resulting new thermal conductivity. We have also extended our theoretical approach to the macroscale, including an analysis of the effects predicted for different NP densities and laser spot size values, as well as for different values of the laser intensity, which can be as low as 0.05 W cm-2. Theoretically predicted temperature variations are in excellent agreement with experimental results.
2017
nanoparticles; optics; plasmonics; thermo-plasmonics; Electronic, Optical and Magnetic Materials; Condensed Matter Physics; Acoustics and Ultrasonics; Surfaces, Coatings and Films
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/264577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact