Efficient algorithms for the computation of optimum stable models are based on unsatisfiable core analysis. However, these algorithms essentially run to completion, providing few or even no suboptimal stable models. This drawback can be circumvented by shrinking unsatisfiable cores. Interestingly, the resulting anytime algorithm can solve more instances than the original algorithm.

Unsatisfiable core shrinking for anytime answer set optimization

Alviano, Mario;Dodaro, Carmine
2017-01-01

Abstract

Efficient algorithms for the computation of optimum stable models are based on unsatisfiable core analysis. However, these algorithms essentially run to completion, providing few or even no suboptimal stable models. This drawback can be circumvented by shrinking unsatisfiable cores. Interestingly, the resulting anytime algorithm can solve more instances than the original algorithm.
2017
9780999241103
Artificial Intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/266751
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact