We introduce a proximal bundle method for the numerical minimization of a nonsmooth difference-of-convex (DC) function. Exploiting some classic ideas coming from cutting-plane approaches for the convex case, we iteratively build two separate piecewise-affine approximations of the component functions, grouping the corresponding information in two separate bundles. In the bundle of the first component, only information related to points close to the current iterate are maintained, while the second bundle only refers to a global model of the corresponding component function. We combine the two convex piecewise-affine approximations, and generate a DC piecewise-affine model, which can also be seen as the pointwise maximum of several concave piecewise-affine functions. Such a nonconvex model is locally approximated by means of an auxiliary quadratic program, whose solution is used to certify approximate criticality or to generate a descent search-direction, along with a predicted reduction, that is next explored in a line-search setting. To improve the approximation properties at points that are far from the current iterate a supplementary quadratic program is also introduced to generate an alternative more promising search-direction. We discuss the main convergence issues of the line-search based proximal bundle method, and provide computational results on a set of academic benchmark test problems.

Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations

Gaudioso, Manlio;Giallombardo, Giovanni;Miglionico, Giovanna;
2018

Abstract

We introduce a proximal bundle method for the numerical minimization of a nonsmooth difference-of-convex (DC) function. Exploiting some classic ideas coming from cutting-plane approaches for the convex case, we iteratively build two separate piecewise-affine approximations of the component functions, grouping the corresponding information in two separate bundles. In the bundle of the first component, only information related to points close to the current iterate are maintained, while the second bundle only refers to a global model of the corresponding component function. We combine the two convex piecewise-affine approximations, and generate a DC piecewise-affine model, which can also be seen as the pointwise maximum of several concave piecewise-affine functions. Such a nonconvex model is locally approximated by means of an auxiliary quadratic program, whose solution is used to certify approximate criticality or to generate a descent search-direction, along with a predicted reduction, that is next explored in a line-search setting. To improve the approximation properties at points that are far from the current iterate a supplementary quadratic program is also introduced to generate an alternative more promising search-direction. We discuss the main convergence issues of the line-search based proximal bundle method, and provide computational results on a set of academic benchmark test problems.
Bundle method; Cutting plane; DC optimization; Nonconvex nonsmooth optimization; Piecewise concave; Computer Science Applications1707 Computer Vision and Pattern Recognition; Control and Optimization; Management Science and Operations Research; Applied Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/266865
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 32
social impact