Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of s=13 TeV, corresponding to an integrated luminosity of 3.2 fb-1 collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-kt algorithm with radius parameter R=0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20<2000 GeV and pseudorapidities of |η|<4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region (|η|<1.2) for jets with 100<500 GeV. An uncertainty of about 4.5% is found for low-pT jets with pT=20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets (|η|>0.8) is derived from dijet pT balance measurements. For jets of pT=80 GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range |η|>3.5 and in a narrow slice of 2.2<|η|<2.4.
Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at s =13 TeV with the ATLAS detector
Amoroso, S.;Barbero, M.;Bellagamba, L.;Benitez, J.;Bona, M.;Cairo, V. M.;Callea, G.;Cao, T.;Capua, M.;Cardillo, F.;Carli, I.;Cavaliere, V.;Cerri, A.;Chen, H.;Chiarella, V.;Colombo, T.;Conti, G.;Crosetti, G.;David, C.;De Maria, A.;De Pedis, D.;Del Gaudio, M.;Fabbri, L.;Farina, C.;Fischer, A.;Francis, D.;Gabrielli, A.;Gabrielli, A.;Glasman, C.;Iacobucci, G.;Iodice, M.;La Rotonda, L.;Le, B.;Li, C.;Li, S.;Liu, J.;Liu, L.;Liu, M.;Liu, Y.;Lu, N.;Madaffari, D.;Mancini, G.;Martinez, M.;Mastroberardino, A.;Melo, M.;Meoni, E.;Merola, L.;Perini, L.;Petrucci, F.;Ragusa, F.;Rinaldi, L.;Rocco, E.;Scarfone, V.;Schioppa, M.;Sessa, M.;Silva, J.;Spagnolo, S.;Sun, S.;Tassi, E.;Terron, J.;Terzo, S.;Veneziano, S.;Wang, J.;Wang, J.;Wang, R.;Wang, W.;Wang, W.;Zhang, L.;Zhang, L.;Zhang, M.;Zhang, R.;Zhang, R.;Zhou, B.;Zhou, M.;Zhou, M.;Zhu, J.;
2017-01-01
Abstract
Jet energy scale measurements and their systematic uncertainties are reported for jets measured with the ATLAS detector using proton-proton collision data with a center-of-mass energy of s=13 TeV, corresponding to an integrated luminosity of 3.2 fb-1 collected during 2015 at the LHC. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells, using the anti-kt algorithm with radius parameter R=0.4. Jets are calibrated with a series of simulation-based corrections and in situ techniques. In situ techniques exploit the transverse momentum balance between a jet and a reference object such as a photon, Z boson, or multijet system for jets with 20<2000 GeV and pseudorapidities of |η|<4.5, using both data and simulation. An uncertainty in the jet energy scale of less than 1% is found in the central calorimeter region (|η|<1.2) for jets with 100<500 GeV. An uncertainty of about 4.5% is found for low-pT jets with pT=20 GeV in the central region, dominated by uncertainties in the corrections for multiple proton-proton interactions. The calibration of forward jets (|η|>0.8) is derived from dijet pT balance measurements. For jets of pT=80 GeV, the additional uncertainty for the forward jet calibration reaches its largest value of about 2% in the range |η|>3.5 and in a narrow slice of 2.2<|η|<2.4.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.