The effect of driving frequency on the efficiency of turbulence generation through magnetic forcing is studied using kinetic hybrid simulations with fully kinetic ions and fluid electrons. The efficiency of driving is quantified by examining the energy input into magnetic field as well as the thermal energy for various driving frequencies. The driving is efficient in exciting turbulence and heating the plasma when the time period of the driving is larger than the nonlinear time of the system. For driving at faster time scales, the energy input is weak and the steady state energy is much lower. The heating of the plasma is correlated with intermittent properties of the magnetic field, which are manifested as non-Gaussian statistics. Implications for turbulence in solar corona are discussed. © 2011 American Institute of Physics.
Effect of driving frequency on excitation of turbulence in a kinetic plasma
Servidio, S.;
2011-01-01
Abstract
The effect of driving frequency on the efficiency of turbulence generation through magnetic forcing is studied using kinetic hybrid simulations with fully kinetic ions and fluid electrons. The efficiency of driving is quantified by examining the energy input into magnetic field as well as the thermal energy for various driving frequencies. The driving is efficient in exciting turbulence and heating the plasma when the time period of the driving is larger than the nonlinear time of the system. For driving at faster time scales, the energy input is weak and the steady state energy is much lower. The heating of the plasma is correlated with intermittent properties of the magnetic field, which are manifested as non-Gaussian statistics. Implications for turbulence in solar corona are discussed. © 2011 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.