Employing a simple ideal magnetohydrodynamic model in spherical geometry, we show that the presence of either rotation or finite magnetic helicity is sufficient to induce dynamical reversals of the magnetic dipole moment. The statistical character of the model is similar to that of terrestrial magnetic field reversals, with the similarity being stronger when rotation is present. The connection between long-time correlations, 1/f noise, and statistics of reversals is supported, consistent with earlier suggestions.

Magnetic field reversals and long-time memory in conducting flows

Servidio, S.;
2014-01-01

Abstract

Employing a simple ideal magnetohydrodynamic model in spherical geometry, we show that the presence of either rotation or finite magnetic helicity is sufficient to induce dynamical reversals of the magnetic dipole moment. The statistical character of the model is similar to that of terrestrial magnetic field reversals, with the similarity being stronger when rotation is present. The connection between long-time correlations, 1/f noise, and statistics of reversals is supported, consistent with earlier suggestions.
2014
Statistical and Nonlinear Physics; Statistics and Probability; Condensed Matter Physics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/268783
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact