The link constrained Steiner tree problem is a variant of the classic Steiner tree problem where the number of links to be activated must not exceed a pre-fixed value. We introduce a multi-start heuristic to obtain a quick feasible solution. The proposed heuristic is embedded into a decomposition framework based on Lagrangean relaxation. In particular, the relaxed problem is decomposed into two polynomially solvable subproblems and, to tackle the Lagrangean dual, we introduce a dual ascent procedure where just one multiplier at a time is updated. Our approach can be classified as a Lagrangean heuristic. In fact, at each iteration of the dual ascent procedure, the information derived from the solution of the relaxed problem is used to provide a feasible solution, by solving a restricted problem defined on an appropriate subgraph. Several versions of the proposed approach are defined and tested on instances drawn from the scientific literature.

A Lagrangean-based decomposition approach for the link constrained Steiner tree problem**

Di Puglia Pugliese, Luigi;Gaudioso, Manlio;Guerriero, Francesca;Miglionico, Giovanna
2018-01-01

Abstract

The link constrained Steiner tree problem is a variant of the classic Steiner tree problem where the number of links to be activated must not exceed a pre-fixed value. We introduce a multi-start heuristic to obtain a quick feasible solution. The proposed heuristic is embedded into a decomposition framework based on Lagrangean relaxation. In particular, the relaxed problem is decomposed into two polynomially solvable subproblems and, to tackle the Lagrangean dual, we introduce a dual ascent procedure where just one multiplier at a time is updated. Our approach can be classified as a Lagrangean heuristic. In fact, at each iteration of the dual ascent procedure, the information derived from the solution of the relaxed problem is used to provide a feasible solution, by solving a restricted problem defined on an appropriate subgraph. Several versions of the proposed approach are defined and tested on instances drawn from the scientific literature.
2018
constrained Steiner tree; decomposition approach; Lagrangean relaxation; Software; Control and Optimization; Applied Mathematics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/269142
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact