The paper investigates the accuracy, the stability and the computational efficiency of a mixed explicit–implicit time integration approach proposed for predicting the nonlinear response of base-isolated structures subjected to earthquake excitation. Adopting the central difference method for evaluating the response of the nonlinear base isolation system and the Newmark’s constant average acceleration method for estimating the superstructure linear response, the proposed partitioned solution approach is used to analyze a 3D seismically isolated structure subjected to a bidirectional earthquake excitation. Both isolation systems adopting lead rubber and friction pendulum bearings are considered. Numerical results show that the computational time required by the proposed method, in spite of its conditional stability arising from the use of the central difference method in the explicit integration substep, is clearly reduced in comparison to the widely used implicit time integration method adopted in conjunction with the pseudo-force approach (i.e., pseudo-force method). As a matter of fact, the typical low stiffness of the isolation system leads to a critical time step larger than the one used to define the ground acceleration accurately and the proposed method preserves its computational efficiency even in the case of isolators with very high initial stiffness (i.e., friction pendulum bearings) for which the critical time step size could become smaller.

A mixed explicit-implicit time integration approach for nonlinear analysis of base-isolated structures

Greco, Fabrizio
;
2018-01-01

Abstract

The paper investigates the accuracy, the stability and the computational efficiency of a mixed explicit–implicit time integration approach proposed for predicting the nonlinear response of base-isolated structures subjected to earthquake excitation. Adopting the central difference method for evaluating the response of the nonlinear base isolation system and the Newmark’s constant average acceleration method for estimating the superstructure linear response, the proposed partitioned solution approach is used to analyze a 3D seismically isolated structure subjected to a bidirectional earthquake excitation. Both isolation systems adopting lead rubber and friction pendulum bearings are considered. Numerical results show that the computational time required by the proposed method, in spite of its conditional stability arising from the use of the central difference method in the explicit integration substep, is clearly reduced in comparison to the widely used implicit time integration method adopted in conjunction with the pseudo-force approach (i.e., pseudo-force method). As a matter of fact, the typical low stiffness of the isolation system leads to a critical time step larger than the one used to define the ground acceleration accurately and the proposed method preserves its computational efficiency even in the case of isolators with very high initial stiffness (i.e., friction pendulum bearings) for which the critical time step size could become smaller.
2018
Base-isolated structures; Earthquake engineering; Mixed time integration; Nonlinear dynamic analysis; Civil and Structural Engineering; Aerospace Engineering; Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/269890
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact