Hypothesis: Due to the well-know surfactant-like properties of diclofenac sodium (DS), vesicular systems consisting exclusively of DS, named diclosomes, were designed with the aim to minimize or avoid the use of other excipients and to improve the formulation biocompatibility. Experiments: Diclosomes were designed and characterized in terms of dimensions, polydispersity index, ξ-potential, drug retained, stability as a function of storage time and ex-vivo percutaneous permeation profiles. Additionally, diclosomes were incorporated into gel dosage forms and their performance in terms of permeation enhancement were evaluated. Findings: DS was found to form nanosized vesicular systems, both alone and in presence of cholesterol. Increasing hydrophobicity (due to the presence of cholesterol) resulted in smaller vesicles, always spherical and homogeneous in shape. Permeation of DS from free solution was found to be lower respect to ones obtained for all diclosomal formulations, allowing these aggregates to be considered as percutaneous permeation enhancers. DS permeated from diclosomal gels was higher than that obtained with traditional niosomal gel, DS plain gel and commercial specialty Voltaren Emulgel®1%, while containing a considerably lower drug amount.

Innovative topical formulations from diclofenac sodium used as surfadrug: The birth of Diclosomes

Tavano, Lorena;Mazzotta, Elisabetta;Muzzalupo, Rita
2018-01-01

Abstract

Hypothesis: Due to the well-know surfactant-like properties of diclofenac sodium (DS), vesicular systems consisting exclusively of DS, named diclosomes, were designed with the aim to minimize or avoid the use of other excipients and to improve the formulation biocompatibility. Experiments: Diclosomes were designed and characterized in terms of dimensions, polydispersity index, ξ-potential, drug retained, stability as a function of storage time and ex-vivo percutaneous permeation profiles. Additionally, diclosomes were incorporated into gel dosage forms and their performance in terms of permeation enhancement were evaluated. Findings: DS was found to form nanosized vesicular systems, both alone and in presence of cholesterol. Increasing hydrophobicity (due to the presence of cholesterol) resulted in smaller vesicles, always spherical and homogeneous in shape. Permeation of DS from free solution was found to be lower respect to ones obtained for all diclosomal formulations, allowing these aggregates to be considered as percutaneous permeation enhancers. DS permeated from diclosomal gels was higher than that obtained with traditional niosomal gel, DS plain gel and commercial specialty Voltaren Emulgel®1%, while containing a considerably lower drug amount.
2018
Diclofenac sodium; Diclosomal gel; Diclosomes; Permeation; Surfadrug; Biotechnology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/270304
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact