As the quality of water in dialysis fluid varies considerably, dialysate is often contaminated by large amounts of bacteria and endotoxins. Membrane properties and operating pressures are acknowledged to give high-flux dialysis with bicarbonate the bacteriological potential to favor passage of endotoxin fragments from the dialysate into the blood stream. Therefore, a sterile dialysate will have to become a standard. Ultrafiltration across hydrophobic synthetic membranes was shown to remove endotoxins (and their fragments) from dialysis water by the combined effect of filtration and adsorption. However, each module can be used for a limited time only. Ceramic membranes may represent an alternative to polymeric membranes for endotoxin removal. In this article, we tested the capacity of different commercial ceramic membranes with nominal molecular weight cut-off down to 1,000 to retain endotoxins from Ps. aeruginosa. The tested membranes did not generally produce dialysate meeting the Association for the Advancement of Medical Instrumentation standard. When using aluminum-containing membranes, we detected aluminum leaking into the dialysate that could possibly be transported into the blood stream.

Membranes for endotoxin removal from dialysate: Considerations on feasibility of commercial ceramic membranes

Catapano, Gerardo;
2000-01-01

Abstract

As the quality of water in dialysis fluid varies considerably, dialysate is often contaminated by large amounts of bacteria and endotoxins. Membrane properties and operating pressures are acknowledged to give high-flux dialysis with bicarbonate the bacteriological potential to favor passage of endotoxin fragments from the dialysate into the blood stream. Therefore, a sterile dialysate will have to become a standard. Ultrafiltration across hydrophobic synthetic membranes was shown to remove endotoxins (and their fragments) from dialysis water by the combined effect of filtration and adsorption. However, each module can be used for a limited time only. Ceramic membranes may represent an alternative to polymeric membranes for endotoxin removal. In this article, we tested the capacity of different commercial ceramic membranes with nominal molecular weight cut-off down to 1,000 to retain endotoxins from Ps. aeruginosa. The tested membranes did not generally produce dialysate meeting the Association for the Advancement of Medical Instrumentation standard. When using aluminum-containing membranes, we detected aluminum leaking into the dialysate that could possibly be transported into the blood stream.
2000
Ceramic; Dialysate; Membranes; Sterilization; Water; Biophysics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/275299
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact