Ontology-based query answering asks whether a Boolean conjunctive query is satisfied by all models of a logical theory consisting of a relational database paired with an ontology. The introduction of existential rules (i.e., Datalog rules extended with existential quantifiers in rule heads) as a means to specify the ontology gave birth to Datalog+/-, a framework that has received increasing attention in the last decade, with focus also on decidability and finite controllability to support effective reasoning. Five basic decidable fragments have been singled out: linear, weakly acyclic, guarded, sticky, and shy. Moreover, for all these fragments, except shy, the important property of finite controllability has been proved, ensuring that a query is satisfied by all models of the theory iff it is satisfied by all its finite models. In this paper, we complete the picture by demonstrating that finite controllability of ontology-based query answering holds also for shy ontologies, and it therefore applies to all basic decidable Datalog+/- classes. To make the demonstration, we devise a general technique to facilitate the process of (dis)proving finite controllability of an arbitrary ontological fragment.

Finite model reasoning over existential rules

AMENDOLA, GIOVANNI;Leone, Nicola;Manna, Marco
2017-01-01

Abstract

Ontology-based query answering asks whether a Boolean conjunctive query is satisfied by all models of a logical theory consisting of a relational database paired with an ontology. The introduction of existential rules (i.e., Datalog rules extended with existential quantifiers in rule heads) as a means to specify the ontology gave birth to Datalog+/-, a framework that has received increasing attention in the last decade, with focus also on decidability and finite controllability to support effective reasoning. Five basic decidable fragments have been singled out: linear, weakly acyclic, guarded, sticky, and shy. Moreover, for all these fragments, except shy, the important property of finite controllability has been proved, ensuring that a query is satisfied by all models of the theory iff it is satisfied by all its finite models. In this paper, we complete the picture by demonstrating that finite controllability of ontology-based query answering holds also for shy ontologies, and it therefore applies to all basic decidable Datalog+/- classes. To make the demonstration, we devise a general technique to facilitate the process of (dis)proving finite controllability of an arbitrary ontological fragment.
2017
Datalog; existential rules; finite controllability; finite model reasoning; query answering; Software; Theoretical Computer Science; Hardware and Architecture; Computational Theory and Mathematics; Artificial Intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/275396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 7
social impact