Perfect light absorption in the visible and near-infrared (NIR) was demonstrated using metamaterials, plasmonic nanostructures, and thin films. Thin film absorbers offer a simple and low-cost design as they can be produced on large areas and without lithography. Light is strongly absorbed in thin film metal-dielectric-metal (MDM) cavities at their resonance frequencies. However, a major drawback of MDM absorbers is their strong resonance iridescence, i.e., angle dependence. Here, we solve the iridescence problem by achieving angle-insensitive narrowband perfect and near-perfect light absorption. In particular, we show analytically that using a high-index dielectric in MDM cavities is sufficient to achieve angle-insensitive cavity resonance. We demonstrate experimentally angle-insensitive perfect and near-perfect absorbers in the NIR and visible regimes up to ±60°. By overcoming the iridescence problem, we open the door for practical applications of MDM absorbers at optical frequencies.

Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities

Strangi, G.
2017-01-01

Abstract

Perfect light absorption in the visible and near-infrared (NIR) was demonstrated using metamaterials, plasmonic nanostructures, and thin films. Thin film absorbers offer a simple and low-cost design as they can be produced on large areas and without lithography. Light is strongly absorbed in thin film metal-dielectric-metal (MDM) cavities at their resonance frequencies. However, a major drawback of MDM absorbers is their strong resonance iridescence, i.e., angle dependence. Here, we solve the iridescence problem by achieving angle-insensitive narrowband perfect and near-perfect light absorption. In particular, we show analytically that using a high-index dielectric in MDM cavities is sufficient to achieve angle-insensitive cavity resonance. We demonstrate experimentally angle-insensitive perfect and near-perfect absorbers in the NIR and visible regimes up to ±60°. By overcoming the iridescence problem, we open the door for practical applications of MDM absorbers at optical frequencies.
2017
Atomic and Molecular Physics, and Optics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/278430
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact